- #1
Euge
Gold Member
MHB
POTW Director
- 2,073
- 244
Here is this week's problem!
-----
Prove that if $f$ is holomorphic in an open subset $\Omega\subset \mathbb{C}$, then for all closed countours $\Gamma$ in $\Omega$, the integral $\oint_{\Gamma} \overline{f(z)}f’(z)\, dz$ is purely imaginary.
-----
-----
Prove that if $f$ is holomorphic in an open subset $\Omega\subset \mathbb{C}$, then for all closed countours $\Gamma$ in $\Omega$, the integral $\oint_{\Gamma} \overline{f(z)}f’(z)\, dz$ is purely imaginary.
-----