- #1
Chris L T521
Gold Member
MHB
- 915
- 0
Thanks to those who participated in last week's POTW! Here's this week's problem!
-----
Problem: A tetrahedron $T$ with vertices $\mathbf{a}$, $\mathbf{b}$, $\mathbf{c}$ and $\mathbf{d}$ can be parameterized by $\mathbf{x}=\mathbf{g}(s,t,u)$, where
\[\mathbf{g}(s,t,u)=\mathbf{d}+u(\mathbf{c}-\mathbf{d})+tu(\mathbf{a}-\mathbf{c})+stu(\mathbf{b}-\mathbf{a})\]
and $0\leq s\leq 1$, $0\leq t\leq 1$ and $0\leq u\leq 1$. Use this to show that
\[\iiint\limits_T f(x,y,z)\,dV= \int_0^1\int_0^1\int_0^1 f(\mathbf{g}(s,t,u))tu^2 \left|\det\left(\begin{bmatrix}\mathbf{b}-\mathbf{a}\\ \mathbf{a}-\mathbf{c}\\ \mathbf{c}-\mathbf{d}\end{bmatrix}\right)\right|\,ds\,dt\,du.\]
Then use this formula to evaluate $\displaystyle\iiint\limits_T (x+y+z)\,dV$, where $T$ is the tetrahedron with vertices $(0,0,0)$, $(1,1,0)$, $(-1,2,1)$, and $(-1,-1,4)$.
-----
-----
Problem: A tetrahedron $T$ with vertices $\mathbf{a}$, $\mathbf{b}$, $\mathbf{c}$ and $\mathbf{d}$ can be parameterized by $\mathbf{x}=\mathbf{g}(s,t,u)$, where
\[\mathbf{g}(s,t,u)=\mathbf{d}+u(\mathbf{c}-\mathbf{d})+tu(\mathbf{a}-\mathbf{c})+stu(\mathbf{b}-\mathbf{a})\]
and $0\leq s\leq 1$, $0\leq t\leq 1$ and $0\leq u\leq 1$. Use this to show that
\[\iiint\limits_T f(x,y,z)\,dV= \int_0^1\int_0^1\int_0^1 f(\mathbf{g}(s,t,u))tu^2 \left|\det\left(\begin{bmatrix}\mathbf{b}-\mathbf{a}\\ \mathbf{a}-\mathbf{c}\\ \mathbf{c}-\mathbf{d}\end{bmatrix}\right)\right|\,ds\,dt\,du.\]
Then use this formula to evaluate $\displaystyle\iiint\limits_T (x+y+z)\,dV$, where $T$ is the tetrahedron with vertices $(0,0,0)$, $(1,1,0)$, $(-1,2,1)$, and $(-1,-1,4)$.
-----