Problem of the Week #48 - February 25th, 2013

  • MHB
  • Thread starter Chris L T521
  • Start date
In summary, the conversation was about the benefits of meditation and how it can improve one's overall well-being. The speakers discussed the various techniques and practices of meditation, such as focusing on breathing and mindfulness. They also mentioned the scientific evidence supporting its positive effects on reducing stress and improving mental health. Overall, the conversation emphasized the importance of incorporating meditation into daily routines for a healthier and happier life.
  • #1
Chris L T521
Gold Member
MHB
915
0
Thanks to those who participated in last week's POTW! Here's this week's problem!

-----

Problem: A tetrahedron $T$ with vertices $\mathbf{a}$, $\mathbf{b}$, $\mathbf{c}$ and $\mathbf{d}$ can be parameterized by $\mathbf{x}=\mathbf{g}(s,t,u)$, where
\[\mathbf{g}(s,t,u)=\mathbf{d}+u(\mathbf{c}-\mathbf{d})+tu(\mathbf{a}-\mathbf{c})+stu(\mathbf{b}-\mathbf{a})\]
and $0\leq s\leq 1$, $0\leq t\leq 1$ and $0\leq u\leq 1$. Use this to show that
\[\iiint\limits_T f(x,y,z)\,dV= \int_0^1\int_0^1\int_0^1 f(\mathbf{g}(s,t,u))tu^2 \left|\det\left(\begin{bmatrix}\mathbf{b}-\mathbf{a}\\ \mathbf{a}-\mathbf{c}\\ \mathbf{c}-\mathbf{d}\end{bmatrix}\right)\right|\,ds\,dt\,du.\]

Then use this formula to evaluate $\displaystyle\iiint\limits_T (x+y+z)\,dV$, where $T$ is the tetrahedron with vertices $(0,0,0)$, $(1,1,0)$, $(-1,2,1)$, and $(-1,-1,4)$.

-----

 
Physics news on Phys.org
  • #2
This week's problem was mostly answered correctly by jakncoke (you got the derivation correct, but the the computation of $\iiint x+y+z \,dV$ incorrect.)

Here's a hybrid of our two solutions (with some minor changes to jakncoke's answer).

We do the justification part first. If $\mathbb{g}(s,t,u)=\mathbf{d}+u(\mathbf{c}-\mathbf{d})+tu(\mathbf{a}-\mathbf{c})+stu(\mathbf{b}-\mathbf{a})$ with $0\leq s,t,u\leq 1$, then we have that\[\begin{aligned}\mathbf{g}_s(s,t,u) &= tu(\mathbf{b}-\mathbf{a})\\ \mathbf{g}_t(s,t,u) &= u(\mathbf{a}-\mathbf{c}) + su(\mathbf{b}-\mathbf{a})\\ \mathbf{g}_u(s,t,u) &= \mathbf{c}-\mathbf{d}+t(\mathbf{a}-\mathbf{c}) + st(\mathbf{b}-\mathbf{a}).\end{aligned}\]
We now see that our Jacobian matrix is
\[\begin{bmatrix}tu(\mathbf{b}-\mathbf{a}) \\ u(\mathbf{a}-\mathbf{c}) + su(\mathbf{b}-\mathbf{a})\\ \mathbf{c}-\mathbf{d} + t(\mathbf{a}-\mathbf{c})+st(\mathbf{b}-\mathbf{a})\end{bmatrix}=\begin{bmatrix}tu & 0 & 0\\ su & u & 0\\ st & t & 1\end{bmatrix}\begin{bmatrix}\mathbf{b}-\mathbf{a}\\ \mathbf{a}-\mathbf{c}\\ \mathbf{c}-\mathbf{d}\end{bmatrix}\]
and thus
\[\begin{aligned} \left|\det\begin{bmatrix}tu(\mathbf{b}-\mathbf{a}) \\ u(\mathbf{a}-\mathbf{c}) + su(\mathbf{b}-\mathbf{a})\\ \mathbf{c}-\mathbf{d} + t(\mathbf{a}-\mathbf{c})+st (\mathbf{b}-\mathbf{a})\end{bmatrix}\right| &= \left|\det\left( \begin{bmatrix}tu & 0 & 0\\ su & u & 0\\ st & t & 1\end{bmatrix} \begin{bmatrix}\mathbf{b}-\mathbf{a}\\ \mathbf{a}-\mathbf{c}\\ \mathbf{c}-\mathbf{d}\end{bmatrix}\right)\right|\\ &= \left|\det\begin{bmatrix} tu & 0 & 0\\ su & u & 0\\ st & t & 1\end{bmatrix}\right| \cdot \left|\det\begin{bmatrix} \mathbf{b}-\mathbf{a}\\ \mathbf{a}-\mathbf{c}\\ \mathbf{c}-\mathbf{d} \end{bmatrix}\right|\\ &= tu^2\left|\det\begin{bmatrix}\mathbf{b}-\mathbf{a}\\ \mathbf{a}-\mathbf{c}\\ \mathbf{c}-\mathbf{d}\end{bmatrix}\right| \end{aligned} \]

Therefore, by change of variables, we have that
\[\begin{aligned} \iiint\limits_T f(x,y,z)\,dV &= \int_0^1\int_0^1\int_0^1 f(\mathbf{g}(s,t,u)) \left|\det\begin{bmatrix}tu(\mathbf{b}-\mathbf{a}) \\ u(\mathbf{a}-\mathbf{c}) + su(\mathbf{b}-\mathbf{a})\\ \mathbf{c}-\mathbf{d} + t(\mathbf{a}-\mathbf{c})+st (\mathbf{b}-\mathbf{a})\end{bmatrix}\right|\,ds\,dt\,du\\ &= \int_0^1\int_0^1\int_0^1 f(\mathbf{g}(s,t,u)) tu^2\left|\det\begin{bmatrix}\mathbf{b}-\mathbf{a}\\ \mathbf{a}-\mathbf{c}\\ \mathbf{c}-\mathbf{d}\end{bmatrix}\right| \,ds\,dt\,du. \end{aligned}\]
which is what was to be shown.

For the second part of the problem, let us define the corners of the tetrahedron $T$ as follows:
\[\begin{aligned}\mathbf{a} &= (0,0,0)\\ \mathbf{b} &= (1,1,0) \\ \mathbf{c} &= (-1,2,1)\\ \mathbf{d} &= (-1,-1,4).\end{aligned}\]

It now follows that
\[\begin{aligned} \mathbf{b}-\mathbf{a} &= (1,1,0)\\ \mathbf{a}-\mathbf{c} &= (1,-2,-1)\\ \mathbf{c}-\mathbf{d} &= (0,3,-3) \end{aligned}\]
and thus we have that
\[\begin{aligned}\mathbf{g}(s,t,u) &= (-1,-1,4) + u(0,3,-3) +tu(1,-2,-1)+ stu(1,1,0)\\ &= (-1+tu+stu, -1+3u-2tu+stu, 4-3u-tu). \end{aligned}\]
and
\[\left|\det\begin{bmatrix}\mathbf{b}-\mathbf{a}\\ \mathbf{a}-\mathbf{c}\\ \mathbf{c}-\mathbf{d}\end{bmatrix}\right| =\left|\det\begin{bmatrix} 1 & 1 & 0\\ 1 & -2 & -1 \\ 0 & 3 & -3\end{bmatrix}\right| = \left|\det\begin{bmatrix} -2 & -1\\ 3 & -3\end{bmatrix} - \det\begin{bmatrix}1 & 0\\ 0 & -3\end{bmatrix}\right|=|9+3| = 12\]

Furthermore, if $f(x,y,z)=x+y+z$, we have that
\[\begin{aligned}f(\mathbf{g}(s,t,u)) &= -1+tu+stu+(-1+3u-2tu+stu)+(4-3u-tu)\\ &= 2-2tu+2stu\\ &= 2(1-tu+stu). \end{aligned}\]

We now plug all of this into our formula to see that

\[\begin{aligned} \iiint\limits_T x+y+z\,dV &= \int_0^1 \int_0^1 \int_0^1 2(1-tu+stu)tu^2(12)\,ds\,dt\,du\\ &= 24\int_0^1 \int_0^1 \int_0^1 tu^2-t^2u^3+st^2u^3\,ds\,dt\,du\\ &= 24\int_0^1 \int_0^1 \left[s(tu^2-t^2u^3)+\frac{1}{2}s^2t^2u^3 \right]_0^1\,dt\,du\\ &= 24\int_0^1\int_0^1 tu^2-\frac{1}{2}t^2u^3\,dt\,du\\ &= 24 \int_0^1\left[ \frac{1}{2}t^2u^2-\frac{1}{6}t^3u^3\right]_0^1\,du\\ &= 24\int_0^1 \frac{u^2}{2}-\frac{u^3}{6}\,du\\ &= 24\left[\frac{u^3}{6} - \frac{u^4}{24}\right]_0^1\\ &= 24\left[\frac{1}{6}-\frac{1}{24}\right]\\ &= 24\cdot\frac{3}{24}\\ &= 3\end{aligned}\]

This now completes the solution to the problem. $\hspace{4in}\clubsuit$
 

FAQ: Problem of the Week #48 - February 25th, 2013

What is the "Problem of the Week #48" for February 25th, 2013?

The "Problem of the Week #48" for February 25th, 2013 is a mathematical problem that was posted on a website called Brilliant.org. It is a weekly challenge for users to solve and submit their solutions.

What is the purpose of the "Problem of the Week" on Brilliant.org?

The purpose of the "Problem of the Week" on Brilliant.org is to provide a platform for users to challenge their problem-solving skills and engage in a community of like-minded individuals who are passionate about mathematics and science.

How is the "Problem of the Week" selected on Brilliant.org?

The "Problem of the Week" is selected by a team of mathematicians and scientists at Brilliant.org. They carefully curate interesting and challenging problems from various fields of mathematics and science to engage and challenge users.

Can anyone participate in the "Problem of the Week" on Brilliant.org?

Yes, anyone can participate in the "Problem of the Week" on Brilliant.org. It is open to all users, regardless of their age or level of expertise. The website also offers resources and hints to help users who may be struggling with the problem.

Are there any rewards for solving the "Problem of the Week" on Brilliant.org?

Yes, there are rewards for solving the "Problem of the Week" on Brilliant.org. Users who submit correct solutions have the chance to earn points, climb the leaderboard, and win prizes such as Brilliant.org merchandise and gift cards.

Back
Top