Problem of the Week #80 - December 9th, 2013

  • MHB
  • Thread starter Chris L T521
  • Start date
In summary, the conversation involved a discussion about an expert summarizer of content. It was stated that the person in question does not respond or reply to questions, but instead only provides a summary of the content. The instruction was to write a summary of the conversation, starting with "In summary."
  • #1
Chris L T521
Gold Member
MHB
915
0
Here's this week's problem.

-----

Problem: Show that an affine connection $\nabla$ is compatible to the Riemannian metric $\langle\cdot,\cdot\rangle$ if and only if, for any curve $c:I\rightarrow M$, and for any pair of vector fields $V$, $W$ along $c$, we have
$$\frac{\,d}{\,dt} \left\langle V,W\right\rangle= \left\langle\frac{\,DV}{\,dt},W\right\rangle + \left\langle V,\frac{\,DW}{\,dt}\right\rangle$$
where $\dfrac{D}{dt}$ denotes the covariant derivative.

-----

 
Physics news on Phys.org
  • #2
No one answered this week's question. You can find my solution below.

[sp]Proof: ($\Leftarrow$): Assume that $\dfrac{\,d}{\,dt}\left<V,W\right> =\left<\dfrac{\,DV}{\,dt},W\right>+\left<V,\dfrac{\,DW}{\,dt}\right>$ is true. Now suppose that $V$ and $W$ are parallel vector fields along the curve $c$. By definition of parallelism, $\dfrac{\,DV}{\,dt}=\dfrac{\,DW}{\,dt}=0$. Therefore,$$\frac{\,d}{\,dt}\left<V,W\right>=\left<0,W\right>+\left<V,0\right>=0.$$
This implies that $\left<V,W\right>$ is constant.

($\Rightarrow$): Suppose that $\nabla$ is compatible with $\left<\cdot,\cdot\right>$. For some point $t_0$ on the curve $c\left(t\right)$, let us define an orthonomal basis $\{E_1\!\left(c\left(t_0\right)\right),E_2\!\left(c\left(t_0\right)\right),\ldots,E_m\!\left(c\left(t_0\right)\right)\}$ of the tangent space $T_{c\!\left(t_0\right)}M$. By parallel transport (proposition 4.2.5), we can extend these vectors to the parallel vector fields $\{E_1\!\left(c\left(t\right)\right), E_2\!\left(c\left(t\right)\right), \ldots,E_m\!\left(c\left(t\right)\right)\}$. Since parallel transport preserves the lengths of these basis vectors, $\{E_1\!\left(c\left(t\right)\right), E_2\!\left(c\left(t\right)\right), \ldots,E_m\!\left(c\left(t\right)\right)\}$ is now an orthonormal basis for $T_{c\!\left(t\right)}M$ for any $t\in I$. Take $V=\displaystyle\sum_{i=1}^m v_iE_i$ and $W=\displaystyle\sum_{j=1}^m w_jE_j$. By definition of the Riemannian metric and noting that $\left<E_i,E_j\right>=1$, we see that
$$\begin{aligned}\left<V,W\right>&=\left<\sum_{i=1}^m v_iE_i,\sum_{i=1}^m w_jE_j\right>\\ &= \sum_{i=1}^m v_iw_i.\end{aligned}$$
Therefore, $\dfrac{\,d}{\,dt}\left<V,W\right>= \displaystyle\sum_{i=1}^m\left(\frac{\,dv_i}{\,dt}w_i +v_i\frac{\,dw_i}{\,dt}\right)$
We now verify the RHS of the equation is true.
$$\begin{aligned}\left<\frac{\,D_cV}{\,dt},W\right>&=\left<\sum_{i=1}^m\frac{D\!\left(v_iE_i\right)}{\,dt},W\right>\\ &= \left<\sum_{i=1}^m\frac{\,dv_i}{\,dt}E_i+v_i\frac{DE_i}{\,dt},\sum_{j=1}^mw_jE_j\right>\\ &= \left<\sum_{i=1}^m\frac{\,dv_i}{\,dt}E_i,\sum_{i=1}^m w_iE_i\right>\\&=\sum_{i=1}^m\frac{\,dv_i}{\,dt}w_i.\end{aligned}$$
Similarly,
$$\begin{aligned}\left<V,\frac{\,D_cW}{\,dt}\right>&=\left<V,\sum_{j=1}^m\frac{D\!\left(w_jE_j\right)}{\,dt}\right>\\ &= \left<\sum_{i=1}^mv_iE_i,\sum_{j=1}^m\frac{\,dw_j}{\,dt}E_j+w_j\frac{DE_j}{\,dt}\right>\\ &= \left<\sum_{i=1}^mv_iE_i,\sum_{i=1}^m\frac{\,dw_i}{\,dt}E_i\right>\\&=\sum_{i=1}^m\frac{\,dw_i}{\,dt}v_i.\end{aligned}$$
We now see that
$$\begin{aligned}\frac{\,d}{\,dt}\left<V,W\right>&=\sum_{i=1}^m\frac{\,dv_i}{\,dt}w_i+v_i\frac{\,dw_i}{\,dt}\\ &= \sum_{i=1}^m\frac{\,dv_i}{\,dt}w_i+\sum_{i=1}^mv_i\frac{\,dw_i}{\,dt}\\ &= \left<\frac{D_cV}{\,dt},W\right>+\left<V,\frac{\,D_cW}{\,dt}\right>.\end{aligned}$$
This completes the proof.$\hspace{.25in}\blacksquare$[/sp]
 

FAQ: Problem of the Week #80 - December 9th, 2013

What is "Problem of the Week #80 - December 9th, 2013"?

"Problem of the Week #80 - December 9th, 2013" is a scientific problem presented by a team of scientists on December 9th, 2013. It is meant to challenge and engage scientists in critical thinking and problem-solving skills.

How often is the "Problem of the Week" released?

The "Problem of the Week" is released every week, typically on a Monday. This allows scientists to have a consistent and regular opportunity to participate in challenging problems.

Who can participate in "Problem of the Week #80 - December 9th, 2013"?

Any scientist or individual interested in scientific problem-solving can participate in "Problem of the Week #80 - December 9th, 2013". It is open to all ages and levels of expertise.

What is the purpose of "Problem of the Week #80 - December 9th, 2013"?

The purpose of "Problem of the Week #80 - December 9th, 2013" is to stimulate critical thinking and problem-solving skills in scientists and to provide a platform for collaboration and discussion among scientists.

Are there any rewards for participating in "Problem of the Week #80 - December 9th, 2013"?

While there are no tangible rewards for participating in "Problem of the Week #80 - December 9th, 2013", the experience and knowledge gained from solving the problem can be valuable for personal and professional development. Additionally, participating in the problem can also lead to networking opportunities and connections with other scientists.

Back
Top