- #1
Chris L T521
Gold Member
MHB
- 915
- 0
Thanks again to those who participated in last week's POTW! Here's this week's problem!
-----
Problem: Use the $\epsilon-\delta$ definition of the limit to prove that $\displaystyle \lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^2+y^2} = 0$.
-----
Hint: [sp]As you start finding upper bounds for the multivariable inequalities, keep in mind that $x^2\leq x^2+y^2$ since $y^2\geq 0$.[/sp]
-----
Problem: Use the $\epsilon-\delta$ definition of the limit to prove that $\displaystyle \lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^2+y^2} = 0$.
-----
Hint: [sp]As you start finding upper bounds for the multivariable inequalities, keep in mind that $x^2\leq x^2+y^2$ since $y^2\geq 0$.[/sp]