- #1
PhysicsTest
- 238
- 26
- Homework Statement
- a. The distance between the plates of a plane-parallel capacitor is 1cm. An electron starts at rest at the negative plate. If a direct voltage of 1000 V is applied, how long will it take the electron to reach the positive plate?
b. What is the magnitude of force which is exerted on the electron at the beginning and at the end of its path?
c. What is the final velocity?
d. If a 60-Hz sinusoidal voltage of peak value 1000 V is applied, how long will the time of transit be? Assume that the electron is released with zero velocity at the instant of time when the applied voltage is passing through zero.
- Relevant Equations
- F = qE, W = PE + KE
The diagram would look like this.
a. The total energy is conserved,
##KE_A + PE_A = KE_B + PE_B ##
##KE_A=0; PE_A =1000##
## 1000 = \frac{m v^2} {2} ##
##2000 = {9.1}*10^{-31}*v^2##
##v^2 = \frac{2000 * 10^{31}} {9.1}; v = 46.8 * 10^{15} ##
##v = at; = \frac {qVt} {md} ; t = \frac{vmd} {qV} seconds##
##t = 2.66 sec ##
b. ##F =q*E = \frac {qV} d = \frac{1.6*10^{-19} * 1000} {0.01} = 1.6 * 10^{-14} N ##
c. ##v =46.8 * 10^15 m/s ##
d. This is a tougher one, one of the hints provided is expanding the sine function into power series
##\sin(\theta) = \theta - \frac{{\theta}^3} 6 ##
The sine function is ##1000\sin(120\pi t)##
##V = 1000\sin(120\pi t) - 1000^3\frac {{\sin^3(120\pi t)}} 6 ##
##ma = qE; ma = \frac{qV} {d}; \frac {mv} t = \frac{qV} {d} ##
##v =\sqrt{\frac{2qV} m}##
Substituting v, i get t. Is the approach correct?
a. The total energy is conserved,
##KE_A + PE_A = KE_B + PE_B ##
##KE_A=0; PE_A =1000##
## 1000 = \frac{m v^2} {2} ##
##2000 = {9.1}*10^{-31}*v^2##
##v^2 = \frac{2000 * 10^{31}} {9.1}; v = 46.8 * 10^{15} ##
##v = at; = \frac {qVt} {md} ; t = \frac{vmd} {qV} seconds##
##t = 2.66 sec ##
b. ##F =q*E = \frac {qV} d = \frac{1.6*10^{-19} * 1000} {0.01} = 1.6 * 10^{-14} N ##
c. ##v =46.8 * 10^15 m/s ##
d. This is a tougher one, one of the hints provided is expanding the sine function into power series
##\sin(\theta) = \theta - \frac{{\theta}^3} 6 ##
The sine function is ##1000\sin(120\pi t)##
##V = 1000\sin(120\pi t) - 1000^3\frac {{\sin^3(120\pi t)}} 6 ##
##ma = qE; ma = \frac{qV} {d}; \frac {mv} t = \frac{qV} {d} ##
##v =\sqrt{\frac{2qV} m}##
Substituting v, i get t. Is the approach correct?
Last edited: