- #1
greg_rack
Gold Member
- 363
- 79
- Homework Statement
- $$\int \frac{h}{ky(h-y)} \ dy$$
Where ##h##, ##k## are real numbers
- Relevant Equations
- none
Since ##h## and ##k## are constants:
$$\frac{h}{k}\cdot \int \frac{1}{y(h-y)} \ dy$$
Now, rewriting the integrating function in terms of coefficients ##A## and ##B##:
$$\frac{1}{y(h-y)}=\frac{A}{y}+\frac{B}{h-y}\rightarrow B=A=\frac{1}{h} \rightarrow$$
$$\frac{1}{h}\int \frac{1}{y}\ dy + \frac{1}{h}\int \frac{1}{h-y}\ dy\rightarrow \frac{ln|y|}{h}-\frac{ln|h-y|}{h}+C$$
Which, multiplied by ##\frac{h}{k}##, becomes:
$$\frac{ln|\frac{y}{h-y}|}{k}+C_1$$
That doesn't correspond to the right integral.
Where did I get it wrong?
$$\frac{h}{k}\cdot \int \frac{1}{y(h-y)} \ dy$$
Now, rewriting the integrating function in terms of coefficients ##A## and ##B##:
$$\frac{1}{y(h-y)}=\frac{A}{y}+\frac{B}{h-y}\rightarrow B=A=\frac{1}{h} \rightarrow$$
$$\frac{1}{h}\int \frac{1}{y}\ dy + \frac{1}{h}\int \frac{1}{h-y}\ dy\rightarrow \frac{ln|y|}{h}-\frac{ln|h-y|}{h}+C$$
Which, multiplied by ##\frac{h}{k}##, becomes:
$$\frac{ln|\frac{y}{h-y}|}{k}+C_1$$
That doesn't correspond to the right integral.
Where did I get it wrong?