- #1
boniphacy
- 9
- 1
We have a function:
## f(x,y)=\sqrt{\frac{1−2x}{1−y^2}} = \frac{\sqrt{1−2x}}{\sqrt{1−y^2}}##
for small x and y, we can use standard approximations:
## 1/\sqrt{1−x}=1+x/2+... ##
and
##\sqrt{1−x}=1−x/2−... ##
Ok. Now we can approximate the whole function f(x,y)
First method:
## \sqrt{\frac{1−2x}{1−y^2}}≈\sqrt{(1−2x)(1+y^2)}=1−x+y^2/2−xy^2 ##
Second method:
##\frac{\sqrt{1−2x}}{\sqrt{1−y^2}}≈(1−x)(1+y^2/2)=1−x+y^2/2−xy^2/2 ##
the both approx. are not equal, difference is: ##xy^2/2 ##!
So, which approximation is the correct one?
## f(x,y)=\sqrt{\frac{1−2x}{1−y^2}} = \frac{\sqrt{1−2x}}{\sqrt{1−y^2}}##
for small x and y, we can use standard approximations:
## 1/\sqrt{1−x}=1+x/2+... ##
and
##\sqrt{1−x}=1−x/2−... ##
Ok. Now we can approximate the whole function f(x,y)
First method:
## \sqrt{\frac{1−2x}{1−y^2}}≈\sqrt{(1−2x)(1+y^2)}=1−x+y^2/2−xy^2 ##
Second method:
##\frac{\sqrt{1−2x}}{\sqrt{1−y^2}}≈(1−x)(1+y^2/2)=1−x+y^2/2−xy^2/2 ##
the both approx. are not equal, difference is: ##xy^2/2 ##!
So, which approximation is the correct one?