- #1
IRNB
- 16
- 0
Homework Statement
give the general solution of the following equation
x' = tx + 6te-t2
Homework Equations
for x'+p(t)x=q(t)
xeI=[tex]\int[/tex]q(t)eIdt where I=[tex]\int[/tex]p(t)dt
integration by parts
[tex]\int[/tex]f'g = [fg] - [tex]\int[/tex]fg'
The Attempt at a Solution
x'-tx=6te-2t
I=[tex]\int[/tex]-t dt = -t2[tex]/[/tex]2
xe-t2[tex]/[/tex]2dt = [tex]\int[/tex]6te-2te-t2[tex]/[/tex]2dt
using integration by parts i get
[tex]\int[/tex]f'g = [fg] - [tex]\int[/tex]fg'
f'=e-t2[tex]/[/tex]2
g=6t
[tex]\int[/tex]6te-2te-t2[tex]/[/tex]2dt = [[tex]\frac{6t}{-2-t}[/tex]e-2t-t2[tex]/[/tex]2] - [tex]\int[/tex][tex]\frac{6}{-2-t}[/tex]e-2t-t2[tex]/[/tex]2 dt
I've tried to integrate the second part of this integral i.e.
[tex]\int[/tex][tex]\frac{6}{-2-t}[/tex]e-2t-t2[tex]/[/tex]2 dt
using integration by parts but it seems to be a very difficult integral to solve. I also have my suspicions that this method may go on forever.
can anyone help? am i missing some kind of identity that i should know? any help would be appreciated.