- #1
alyafey22
Gold Member
MHB
- 1,561
- 1
Let \(\displaystyle f:\mathbb{R} \to \mathbb{R}\) and \(\displaystyle g:\mathbb{R} \to \mathbb{R}\) be discontinuous at a point \(\displaystyle c\) . Give an example of a function \(\displaystyle h(x)=f(x)g(x)\) such that \(\displaystyle h\) is continuous at c.
\(\displaystyle
f(x) =
\begin{cases}
0 & \text{if } x \in \mathbb{Q} \\
1 & \text{if } x \in \mathbb{R}-\mathbb{Q}
\end{cases}\)
\(\displaystyle
g(x) =
\begin{cases}
1 & \text{if } x \in \mathbb{Q} \\
0 & \text{if } x \in \mathbb{R}-\mathbb{Q}
\end{cases}\)
\(\displaystyle f,g\) are continuous nowhere but \(\displaystyle h(x)=0 \,\,\, \, \forall \,\, x \in \mathbb{R}\).
What other examples you might think of ?
\(\displaystyle
f(x) =
\begin{cases}
0 & \text{if } x \in \mathbb{Q} \\
1 & \text{if } x \in \mathbb{R}-\mathbb{Q}
\end{cases}\)
\(\displaystyle
g(x) =
\begin{cases}
1 & \text{if } x \in \mathbb{Q} \\
0 & \text{if } x \in \mathbb{R}-\mathbb{Q}
\end{cases}\)
\(\displaystyle f,g\) are continuous nowhere but \(\displaystyle h(x)=0 \,\,\, \, \forall \,\, x \in \mathbb{R}\).
What other examples you might think of ?