- #1
- 1,443
- 191
Prof. Putinar,
Guillera & Sondow gave
for [tex]x\geq 0[/tex], to which I add
for [tex]\mbox{Re} \geq 0[/tex].
-Ben Orin
Guillera & Sondow gave
[tex]e^{x}=\prod_{n=1}^{\infty}\left(\prod_{k=1}^{n} (1+kx)^{(-1)^{k+1}\left(\begin{array}{c}n\\k\end{array}\right)} \right) ^{\frac{1}{n}}[/tex]
for [tex]x\geq 0[/tex], to which I add
[tex]\boxed{\frac{e^{u}\Gamma (u)}{\sqrt{2\pi e}}=\prod_{n=0}^{\infty}\left(\prod_{k=0}^{n} (k+u)^{(-1)^{k}\left(\begin{array}{c}n\\k\end{array}\right) (k+u)} \right) ^{\frac{1}{n+1}}}[/tex]
for [tex]\mbox{Re} \geq 0[/tex].
-Ben Orin