Prof. Putinar's Infinite Product: Ben Orin's Addition

  • Thread starter Thread starter benorin
  • Start date Start date
  • Tags Tags
    Infinite Product
Click For Summary
Prof. Putinar's discussion highlights an infinite product representation of the exponential function e^x, originally presented by Guillera and Sondow. Ben Orin contributes an additional formula involving the Gamma function, expressing it as a product for Re[u] ≥ 0. Both formulations utilize nested products and combinatorial coefficients. The conversation emphasizes the mathematical elegance and utility of these infinite product representations. The exchange showcases ongoing research and collaboration in mathematical analysis.
benorin
Science Advisor
Insights Author
Messages
1,442
Reaction score
191
Prof. Putinar,

Guillera & Sondow gave

e^{x}=\prod_{n=1}^{\infty}\left(\prod_{k=1}^{n} (1+kx)^{(-1)^{k+1}\left(\begin{array}{c}n\\k\end{array}\right)} \right) ^{\frac{1}{n}}​

for x\geq 0, to which I add

\boxed{\frac{e^{u}\Gamma (u)}{\sqrt{2\pi e}}=\prod_{n=0}^{\infty}\left(\prod_{k=0}^{n} (k+u)^{(-1)^{k}\left(\begin{array}{c}n\\k\end{array}\right) (k+u)} \right) ^{\frac{1}{n+1}}}​

for \mbox{Re} <u>\geq 0</u>.

-Ben Orin
 
Physics news on Phys.org
Cool.



















:rolleyes:
 
The paper of Guillera & Sondow cited above is entitled http://arxiv.org/PS_cache/math/pdf/0506/0506319.pdf and their result (the infinite product for e^x) is equation (58) on pg. 18.
 
Last edited by a moderator:
An Infinite Product for e^x

Edit: Fixing my post for TeX and updating link to paper.

Prof. Putinar,

Guillera & Sondow1 gave e^{x} = \prod_{n=1}^{\infty}\left( \prod_{k=1}^{n} (kx+1) ^{(-1)^{k+1} \left( \begin{array}{c}n\\k\end{array}\right) } \right) ^{\frac{1}{n}}\mbox{ for }x\geq 0,
to it's company I add \frac{e^{u}\Gamma (u)}{\sqrt{2\pi e}}=\prod_{n=0}^{\infty}\left(\prod_{k=0}^{n}(k+u)^{<br /> (-1)^{k}\left(\begin{array}{c}n\\k\end{array}\right)(k+u)}\right)^{\frac{1}{n+1}}\mbox{ for }\mbox{Re} <u>\geq 0.</u>



-Ben Orin

benorin@umail.ucsb.edu

1 The infinite product for e^{x} is (60) on pg. 20 of http://arxiv.org/abs/math/0506319" .)
 
Last edited by a moderator:

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
462
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K