- #1
congtongsat
- 3
- 0
Problem:
We define half infinite intervals as follows:
(a, [tex]\infty[/tex]) = {x[tex]\in[/tex] R | x>a};
[a, [tex]\infty[/tex]) = {x[tex]\in[/tex] R | x[tex]\geq[/tex]a};
Prove that:
(i) (a, [tex]\infty[/tex]) [tex]\subseteq[/tex] [b, [tex]\infty[/tex]) [tex]\Leftrightarrow[/tex] a[tex]\geq[/tex]b,
(ii) [a, [tex]\infty[/tex]) [tex]\subseteq[/tex] (b, [tex]\infty[/tex]) [tex]\Leftrightarrow[/tex] a>b.
I've got pretty much no idea how to do this. Then again I've been struggling at this for a couple hours and my mind doesn't work particularly well at 2:25 am PST. Help would be greatly appreciated on this.
Thanks.
We define half infinite intervals as follows:
(a, [tex]\infty[/tex]) = {x[tex]\in[/tex] R | x>a};
[a, [tex]\infty[/tex]) = {x[tex]\in[/tex] R | x[tex]\geq[/tex]a};
Prove that:
(i) (a, [tex]\infty[/tex]) [tex]\subseteq[/tex] [b, [tex]\infty[/tex]) [tex]\Leftrightarrow[/tex] a[tex]\geq[/tex]b,
(ii) [a, [tex]\infty[/tex]) [tex]\subseteq[/tex] (b, [tex]\infty[/tex]) [tex]\Leftrightarrow[/tex] a>b.
I've got pretty much no idea how to do this. Then again I've been struggling at this for a couple hours and my mind doesn't work particularly well at 2:25 am PST. Help would be greatly appreciated on this.
Thanks.