Progressive wave, wavelength moving in the opposite direction

AI Thread Summary
The discussion centers on understanding why the wavelength differs for waves moving in opposite directions. For a wave traveling in the -z direction, the wavelength is calculated to be 18 cm using the formula λ = 2π/κ, where κ is derived from the wave's angular frequency and velocity. In contrast, the wavelength for a wave moving in the +z direction is found to be 9 cm, leading to confusion about the differing results despite the same wave properties. The conversation highlights that without additional information, multiple solutions exist for the wavelength due to the periodic nature of waves, and the choice of integer n can affect the outcome. Ultimately, clarity on how to determine n is crucial for resolving the discrepancy in wavelengths.
Redwaves
Messages
134
Reaction score
7
Homework Statement
Finding the wavelength. if the wave is moving in the +z direction and -z direction.
Relevant Equations
##\Psi(z=15cm,t) = \hat{x} 6 cos (\frac{\pi}{3}t)##
##\Psi(z=12cm,t + 2s) = \Psi(z=18cm,t)##
I'm trying to find the wavelength. However, I don't understand why the wavelength is different if the wave is moving in the +z direction.

I have
##\Psi(z=15cm,t) = \hat{x} 6 cos (\frac{\pi}{3}t)##
##\Psi(z=12cm,t + 2s) = \Psi(z=18cm,t)##

For a wave moving on the -z direction

I know that the wavelength = ##\frac{2\pi}{\kappa}## and the shape of the wave is describe by this function ##x(z,t) = A cos(\omega t +\kappa z + \alpha_0)##

##\kappa = \frac{\omega}{v}, \omega = \frac{\pi}{3}## and ##v = 12-18/(t+2)-t = -3##

thus, the wavelength = ##\frac{2\pi}{\pi/9} = 18 ##, which is the right answer.

However, for a wave moving in the +z direction the wavelength is 9cm. Why is this different ?The velocity isn't the same? how can I find it.
 
Last edited:
Physics news on Phys.org
Redwaves said:
Homework Statement:: Finding the wavelength. if the wave is moving in the +z direction and -z direction.
Relevant Equations:: ##\Psi(z=15cm,t) = \hat{x} 6 cos (\frac{\pi}{3}t)##
##\Psi(z=12cm,t + 2s) = \Psi(z=18cm,t)##

I'm trying to find the wavelength. However, I don't understand why the wavelength is different if the wave is moving in the +z direction.

I have
##\Psi(z=15cm,t) = \hat{x} 6 cos (\frac{\pi}{3}t)##
##\Psi(z=12cm,t + 2s) = \Psi(z=18cm,t)##

For a wave moving on the -z direction

I know that the wavelength = ##\frac{2\pi}{\kappa}## and the shape of the wave is describe by this function ##x(z,t) = A cos(\omega t +\kappa z + \alpha_0)##

##\kappa = \frac{\omega}{v}, \omega = \frac{\pi}{3}## and ##v = 12-18/(t+2)-t = -3##

thus, the wavelength = ##\frac{2\pi}{\pi/9} = 18 ##, which is the right answer.

However, for a wave moving in the +z direction the wavelength is 9cm. Why is this different ?The velocity isn't the same? how can I find it.
In general, we are given: $$\Psi(z_1, t+ t_1) = \Psi(z_2, t)$$Which implies that$$wt_1 = k(z_2 - z_1) \pm 2\pi n$$This gives us an infinite number of solutions, depending on the direction of motion and how many wavelengths there are between the points ##z_1## and ##z_2##.

If we take ##n = 0##, then we have $$\lambda = \frac{2\pi}{k} = 2\pi\frac{z_2 - z_1}{wt_1}$$And, in this case we have $$\lambda = 18cm$$. But, as above, there are infinitely many other solutions - one for ecah value of ##n##.
 
How we know which value for n we choose? In my example., how can I know that for a wave moving in the +z direction n is -1?
 
Redwaves said:
How we know which value for n we choose? In my example., how can I know that for a wave moving in the +z direction n is -1?
You don't know. Unless you have additional information, then there are multiple solutions.
 
In my case it should have a way to find wavelength since, that what I have to find.

Edit: from the information above, I have to find the wavelength.
Tell me if I'm not clear.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top