- #1
dykkms
- 2
- 0
Homework Statement
The projectile with initial velocity [tex]v_0[/tex] is moving in environment with air resistance, which is linear to projectile's velocity. The task is to prove, that horizontal distance is maximal, if the elevation angle ([tex]\alpha[/tex]) and the angle of trajectory tangent in place of impact are complementary.
Homework Equations
[tex] F_x = - k.v_x [/tex]
[tex] F_y = - m.g - k.v_y [/tex]
[tex] v_x = v.\cos(\varphi) [/tex]
[tex] v_y = v.\sin(\varphi) [/tex]
[tex] v_{0x} = v_0.\cos(\alpha) [/tex]
[tex] v_{0y} = v_0.\sin(\alpha) [/tex]
The Attempt at a Solution
equations in [tex]x[/tex] direction:
[tex] a_x = \frac{F_x}{m} = - \frac{k}{m} v_x [/tex]
[tex] a_x = \frac{\mathrm{d}v_x}{\mathrm{d}t} = - \frac{k}{m} v_x [/tex]
[tex] \frac{\mathrm{d}v_x}{v_x} = - \frac{k}{m}\mathrm{d}t \Rightarrow v_x = v_{0x}.e^{-\frac{k}{m}t} [/tex]
after integration:
[tex] x = -\frac{m}{k} v_{0x} . e^{-\frac{k}{m}t} + \frac{m}{k} v_{0x} [/tex]
equations in [tex]y[/tex] direction:
[tex] a_y = \frac{F_y}{m} = - g - \frac{k}{m} v_y [/tex]
[tex] a_y = \frac{\mathrm{d}v_y}{\mathrm{d}t} = - g - \frac{k}{m} v_y [/tex]
[tex] \frac{\mathrm{d}v_y}{- g - \frac{k}{m} v_y} = \mathrm{d}t [/tex]
after integrations and mathematical expressing:
[tex] v_y = \frac{m}{k}\left(g + \frac{k}{m}v_{0y}\right)e^{-\frac{k}{m}t} - g\frac{m}{k} [/tex]
[tex] y = - \frac{m^2}{k^2}\left(g+ \frac{k}{m}v_{0y}\right).\left(e^{-\frac{k}{m}t} - 1\right) - g\frac{m}{k}t [/tex]
And here is my problem:
I would like to express from [tex]y[/tex] equation the time of the impact [tex]t_i[/tex]. I know about this moment, that [tex] y = 0 [/tex]. If I am able to write explicit function for [tex] t_i(\alpha) [/tex], then I would pass it to [tex] x [/tex] function. Afterwards I would differentiate this [tex] x [/tex] function according to [tex] \alpha [/tex]. Then I would find the ideal [tex] \alpha [/tex], which I would use to find [tex] t_i [/tex] which I would finally use to find impact angle.
Unfortunatelly, I can't see the way to find explicit expression of [tex] t_i [/tex] from [tex] y = 0 [/tex] function.