- #1
Kashmir
- 468
- 74
Quantum Mechanics, McIntyre states the projection postulate as:
"After a measurement of ##A## that yields the result ##a_n##,the quantum system is in a new state that is the normalized projection of the original system ket onto the ket (or kets) corresponding to the result of the measurement"
"##\left|\psi^\prime\right> = \frac{P_n\left|\psi\right>}{\sqrt{\left<\psi\right|P_n\left|\psi\right>}}.##"
Then we do a Stern Gerlach type experiment as shown in figure below (The X, Z are analyzers that measure the x, z spin of incoming stream of atoms. The up arrow is up spin.
At the right end is the final counter)
The author then says that the state of atoms input to the final Z analyzer is ##\begin{aligned}\left|\psi_{2}\right\rangle &=\frac{\left(P_{+x}+P_{-x}\right)\left|\psi_{1}\right\rangle}{\sqrt{\left\langle\psi_{1}\left|\left(P_{+x}+e_{-x}\right)\right| \psi_{1}\right\rangle}} \\ &=\frac{\left(P_{+x}+P_{-x}\right)|+\rangle}{\sqrt{\left\langle+\left|\left(P_{+x}+P_{-x}\right)\right|+\right\rangle}} . \end{aligned}## because "both states are used, the relevant projection operator is the sum of the two projection operators foreach port, ##P_{+x}+P_{-x}##, where ##P_{+x}=|+\rangle_{x x}\langle+## and ##P_{-x}=|-\rangle_{x x}(-\mid##"I'm not able to understand why should the state input to the final Z analyzer be ##\begin{aligned}\left|\psi_{2}\right\rangle &=\frac{\left(P_{+x}+P_{-x}\right)|+\rangle}{\sqrt{\left\langle+\left|\left(P_{+x}+P_{-x}\right)\right|+\right\rangle}} . \end{aligned}##
How does this follow from the projection postulate?
"After a measurement of ##A## that yields the result ##a_n##,the quantum system is in a new state that is the normalized projection of the original system ket onto the ket (or kets) corresponding to the result of the measurement"
"##\left|\psi^\prime\right> = \frac{P_n\left|\psi\right>}{\sqrt{\left<\psi\right|P_n\left|\psi\right>}}.##"
Then we do a Stern Gerlach type experiment as shown in figure below (The X, Z are analyzers that measure the x, z spin of incoming stream of atoms. The up arrow is up spin.
At the right end is the final counter)
The author then says that the state of atoms input to the final Z analyzer is ##\begin{aligned}\left|\psi_{2}\right\rangle &=\frac{\left(P_{+x}+P_{-x}\right)\left|\psi_{1}\right\rangle}{\sqrt{\left\langle\psi_{1}\left|\left(P_{+x}+e_{-x}\right)\right| \psi_{1}\right\rangle}} \\ &=\frac{\left(P_{+x}+P_{-x}\right)|+\rangle}{\sqrt{\left\langle+\left|\left(P_{+x}+P_{-x}\right)\right|+\right\rangle}} . \end{aligned}## because "both states are used, the relevant projection operator is the sum of the two projection operators foreach port, ##P_{+x}+P_{-x}##, where ##P_{+x}=|+\rangle_{x x}\langle+## and ##P_{-x}=|-\rangle_{x x}(-\mid##"I'm not able to understand why should the state input to the final Z analyzer be ##\begin{aligned}\left|\psi_{2}\right\rangle &=\frac{\left(P_{+x}+P_{-x}\right)|+\rangle}{\sqrt{\left\langle+\left|\left(P_{+x}+P_{-x}\right)\right|+\right\rangle}} . \end{aligned}##
How does this follow from the projection postulate?
Last edited: