- #1
jostpuur
- 2,116
- 19
I've now encountered two different definitions for a projection.
Let X be a Banach space. An operator P on it is a projection if P^2=P.
Let H be a Hilbert space. An operator P on it is a projection if P^2=P and if P is self-adjoint.
But the Hilbert space is also a Banach space, and there's two different definitions for projections then. Are these common definitions anyway?
Let X be a Banach space. An operator P on it is a projection if P^2=P.
Let H be a Hilbert space. An operator P on it is a projection if P^2=P and if P is self-adjoint.
But the Hilbert space is also a Banach space, and there's two different definitions for projections then. Are these common definitions anyway?