- #1
hlfmanhoffdor
- 2
- 0
I'm having a little trouble seeing something Harris says in his intro book on alg. geom. Say X is contained in P^n. Harris says that X is a projective variety iff X intersect U_i is an affine variety for each i=0,...,n, where U_i are the points [Z_0 , Z_1 , ... , Z_n] in P^n with Z_i =/ 0. I'm a little confused about how he claims this:
If X is a projective variety, say its the locus of the homogeneous polynomials F_α(Z_0, ..., Z_n). Say we define on A^n the polynomials f_α(z_1, ..., z_n) = F_α(1,z_1, ...,z_n) = F_α(Z_0, ..., Z_n) / Zd_0 where d is the degree of F_α and z_i are the local coords (z_i = Z_i/Z_0). Then he claims the zero locus of the f_α is X intersect U_0. Now since there's a bijection between U_0 and A^n, are we just identifying X intersect U_0 with its image via the local coordinates, meaning its an affine variety too?
For the other direction, I don't really see this. If for example X intersect U_0 is an affine variety, say its the locus of f_α(z_1, ..., z_n),then we can define homogeneous polynomials F_α(Z_0, ... Z_n) = Zd_0 f_α(Z_1/Z_0,..., Z_n/Z_0) where d = deg(f_α). But then is the zero locus of the F_α just X?
Any help would be appreciated!
If X is a projective variety, say its the locus of the homogeneous polynomials F_α(Z_0, ..., Z_n). Say we define on A^n the polynomials f_α(z_1, ..., z_n) = F_α(1,z_1, ...,z_n) = F_α(Z_0, ..., Z_n) / Zd_0 where d is the degree of F_α and z_i are the local coords (z_i = Z_i/Z_0). Then he claims the zero locus of the f_α is X intersect U_0. Now since there's a bijection between U_0 and A^n, are we just identifying X intersect U_0 with its image via the local coordinates, meaning its an affine variety too?
For the other direction, I don't really see this. If for example X intersect U_0 is an affine variety, say its the locus of f_α(z_1, ..., z_n),then we can define homogeneous polynomials F_α(Z_0, ... Z_n) = Zd_0 f_α(Z_1/Z_0,..., Z_n/Z_0) where d = deg(f_α). But then is the zero locus of the F_α just X?
Any help would be appreciated!