- #36
etudiant
Gold Member
- 1,239
- 128
Will defer to the experts we benefit from on this site. They will have better insight.
My understanding is that the Chernobyl reactor did go up in power by about a thousand times in an instant as some of the control rods were being reinserted, because the ends of the control rods did not absorb neutrons, but only slowed them. That was enough power to ensure world's most effective steam explosion as all the coolant was flashed into very high temperature steam in a fraction of a second.
A nuclear explosion by itself is just a heat source, the particles streaming from the fission or fusion reactions may be lethal, but are not really that damaging, a reality that has of course stimulated the development of neutron bombs. Here the steam explosion did the damage.
Chernobyl was a nuclear excursion, but not an explosion, because the reactor blew apart before there could be a nuclear explosion. It underscores that the problem in making a nuclear bomb is how to keep the components together long enough for the explosion to occur.
My understanding is that the Chernobyl reactor did go up in power by about a thousand times in an instant as some of the control rods were being reinserted, because the ends of the control rods did not absorb neutrons, but only slowed them. That was enough power to ensure world's most effective steam explosion as all the coolant was flashed into very high temperature steam in a fraction of a second.
A nuclear explosion by itself is just a heat source, the particles streaming from the fission or fusion reactions may be lethal, but are not really that damaging, a reality that has of course stimulated the development of neutron bombs. Here the steam explosion did the damage.
Chernobyl was a nuclear excursion, but not an explosion, because the reactor blew apart before there could be a nuclear explosion. It underscores that the problem in making a nuclear bomb is how to keep the components together long enough for the explosion to occur.