MHB Proof: $(A - B)\cup B = A$ iff $B\subseteq A$

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
Click For Summary
The discussion centers on the proof that $(A - B)\cup B = A$ if and only if $B\subseteq A$. Participants explore the steps of the proof, highlighting that if $B$ is a subset of $A$, the expression simplifies correctly. However, one user expresses confusion, stating they consistently arrive at $B$ instead of $A$. Another contributor clarifies that the expression $(A\cup B)\cap (B^c\cup B)$ simplifies to $(A\cup B)$, which is the universal set. This indicates that the proof holds true under the condition that $B$ is indeed a subset of $A.
Dustinsfl
Messages
2,217
Reaction score
5
$(A - B)\cup B = A$ iff $B\subseteq A$.Suppose $B\subseteq A$.
$$
\begin{array}{lcl}
(A - B)\cup B & = & (A\cap B^c)\cup B\\
& = & (A\cup B)\cap (B^c\cup B)\\
& = & A\cap B\\
& = & B
\end{array}
$$

I keep getting = B not A.
 
Physics news on Phys.org
dwsmith said:
$(A - B)\cup B = A$ iff $B\subseteq A$.Suppose $B\subseteq A$.
$$
\begin{array}{lcl}
(A - B)\cup B & = & (A\cap B^c)\cup B\\
& = & (A\cup B)\cap (B^c\cup B)\\
& = & A\cap B\\
& = & B
\end{array}
$$

I keep getting = B not A.

Hi dwsmith, :)

Note that, \[(A\cup B)\cap (B^c\cup B)=(A\cup B)\cap V=(A\cup B)\] where \(V\) is the universal set.

Kind Regards,
Sudharaka.
 
The standard _A " operator" maps a Null Hypothesis Ho into a decision set { Do not reject:=1 and reject :=0}. In this sense ( HA)_A , makes no sense. Since H0, HA aren't exhaustive, can we find an alternative operator, _A' , so that ( H_A)_A' makes sense? Isn't Pearson Neyman related to this? Hope I'm making sense. Edit: I was motivated by a superficial similarity of the idea with double transposition of matrices M, with ## (M^{T})^{T}=M##, and just wanted to see if it made sense to talk...

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 62 ·
3
Replies
62
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K