- #1
xeon123
- 90
- 0
I'm trying to prove by induction the expression:
[itex]\sum_{i=1}^{n-1}(n-i)=\frac{n(n-1)}{2}[/itex]
For the base case, n=2, S(2)=[itex]\frac{2(2-1)}{2}=1[/itex]
For S(n+1)=[itex]\frac{(n+1)((n+1)-1)}{2}[/itex] I have:
S(n+1) = [itex]\frac{n(n-1)}{2}[/itex] + (n+1) <--- Is this correct?
I don't know what is the term for n+1. Any help?
[itex]\sum_{i=1}^{n-1}(n-i)=\frac{n(n-1)}{2}[/itex]
For the base case, n=2, S(2)=[itex]\frac{2(2-1)}{2}=1[/itex]
For S(n+1)=[itex]\frac{(n+1)((n+1)-1)}{2}[/itex] I have:
S(n+1) = [itex]\frac{n(n-1)}{2}[/itex] + (n+1) <--- Is this correct?
I don't know what is the term for n+1. Any help?
Last edited: