- #1
whitendark
- 1
- 0
1. The problem statement,
Prove that for any n[itex]\in[/itex]N and any real umber x,
[itex]\sum\stackrel{n}{i=0}[/itex][itex]\left(\stackrel{n}{i}\right)[/itex][itex]\frac{x^{i+1}}{i+1}=[/itex][itex]\frac{1}{n+1}((1+x)^{n+1}-1)[/itex]
2.
I tried to integrate both sides of Bionomial Theorem
However, I'm not sure what to do at the first place. :(
Prove that for any n[itex]\in[/itex]N and any real umber x,
[itex]\sum\stackrel{n}{i=0}[/itex][itex]\left(\stackrel{n}{i}\right)[/itex][itex]\frac{x^{i+1}}{i+1}=[/itex][itex]\frac{1}{n+1}((1+x)^{n+1}-1)[/itex]
2.
I tried to integrate both sides of Bionomial Theorem
However, I'm not sure what to do at the first place. :(