- #1
bonfire09
- 249
- 0
1. Homework Statement
Let A and B be nonempty bounded subsets of [itex]\mathbb{R}[/itex], and let [itex] A + B [/itex] be the set of all sums [itex]a + b[/itex] where [itex]a ∈ A[/itex] and [itex]b ∈ B[/itex].
(a) Prove [itex] sup(A+B) = supA+supB [/itex].
Let Set [itex]A=(a_1,...,a_t: a_1<...a_i<a_t)[/itex] and let set [itex]B=(b_1,...,b_s: b_1<...<b_s)[/itex] Then set [itex]A+B=(a_i+b_k: 1≤ i≤ t \text{and} 1≤ k ≤ S)[/itex] It follows that [itex] a_t= sup(A)[/itex] and [itex] b_s=sup(B) [/itex] since [itex] a_i ≤a_s [/itex] and [itex] b_s ≥ b_k[/itex] for all [itex] a_i ε A [/itex] and [itex] b_k ε B [/itex] where [itex] 1≤ k ≤s[/itex] and [itex] 1≤ k ≤s[/itex]. Now [itex] sup(A+B) = a_t+b_s[/itex] since [itex] a_t+b_s≥ a_i+b_k [/itex]
Thus [itex] sup(A+B) = a_t+b_s= sup(A)+ sup (B) [/itex]. Now I don't know whether I should argue that [itex] a_t[/itex] and [itex] b_s [/itex] is the greatest least lower bound because I already have the elements in sets A and B are in increasing order. Other than that would my proof be correct?
Let A and B be nonempty bounded subsets of [itex]\mathbb{R}[/itex], and let [itex] A + B [/itex] be the set of all sums [itex]a + b[/itex] where [itex]a ∈ A[/itex] and [itex]b ∈ B[/itex].
(a) Prove [itex] sup(A+B) = supA+supB [/itex].
Homework Equations
The Attempt at a Solution
Let Set [itex]A=(a_1,...,a_t: a_1<...a_i<a_t)[/itex] and let set [itex]B=(b_1,...,b_s: b_1<...<b_s)[/itex] Then set [itex]A+B=(a_i+b_k: 1≤ i≤ t \text{and} 1≤ k ≤ S)[/itex] It follows that [itex] a_t= sup(A)[/itex] and [itex] b_s=sup(B) [/itex] since [itex] a_i ≤a_s [/itex] and [itex] b_s ≥ b_k[/itex] for all [itex] a_i ε A [/itex] and [itex] b_k ε B [/itex] where [itex] 1≤ k ≤s[/itex] and [itex] 1≤ k ≤s[/itex]. Now [itex] sup(A+B) = a_t+b_s[/itex] since [itex] a_t+b_s≥ a_i+b_k [/itex]
Thus [itex] sup(A+B) = a_t+b_s= sup(A)+ sup (B) [/itex]. Now I don't know whether I should argue that [itex] a_t[/itex] and [itex] b_s [/itex] is the greatest least lower bound because I already have the elements in sets A and B are in increasing order. Other than that would my proof be correct?