- #1
nobahar
- 497
- 2
[tex]f(x) = 2^x \left \left[/tex]
[tex]f(kx) = 2^(kx) \left \left[/tex]
[tex]b = 2^k \left \left[/tex]
[tex]b^x = 2^(kx) \left \left[/tex]
[tex]b^x = f(kx)[/tex]
[tex]\frac{d}{dx}(b^x) = \frac{d}{dx}(f(kx)) = \frac{d}{dx}(2^(kx)) (1)[/tex]
[tex]\frac{d}{dx}(f(kx)) = k.f'(kx) (2)[/tex]
I can't see how step (1) gets to step (2).
Because I thought:
[tex]\frac{d}{dx}(f(kx)) = k.\frac{d}{dx}(f(x))[/tex]
[tex]f(kx) = 2^(kx) \left \left[/tex]
[tex]b = 2^k \left \left[/tex]
[tex]b^x = 2^(kx) \left \left[/tex]
[tex]b^x = f(kx)[/tex]
[tex]\frac{d}{dx}(b^x) = \frac{d}{dx}(f(kx)) = \frac{d}{dx}(2^(kx)) (1)[/tex]
[tex]\frac{d}{dx}(f(kx)) = k.f'(kx) (2)[/tex]
I can't see how step (1) gets to step (2).
Because I thought:
[tex]\frac{d}{dx}(f(kx)) = k.\frac{d}{dx}(f(x))[/tex]