- #1
Boorglar
- 210
- 10
Homework Statement
This problem was taken from Spivak's Calculus 3rd Edition, Problem 19-25 (d).
Let [itex]f[/itex] be integrable on [itex][-1 , 1][/itex] and continuous at [itex]0[/itex]. Show that [tex] \lim_{h\rightarrow 0^+} {\int_{-1}^{1}{\frac{h} {h^2+x^2}}f(x)dx = {\pi}f(0).}[/tex]
Homework Equations
I already proved from part (c) that [tex] \lim_{h\rightarrow 0^+} {\int_{-1}^{1}{\frac{h} {h^2+x^2}}dx = {\pi}}[/tex]
which is easy with arctan.
The Attempt at a Solution
I found a way to prove it but I am not 100% sure that it is rigorous enough (and the proof given in the answers is different).
First consider [itex] \int_{-h}^{h}{\frac{h} {h^2+x^2}}f(x)dx. [/itex] Since [itex]f[/itex] is continuous at [itex]0[/itex], then for some [itex]\delta > 0,[/itex] [itex]f(0) - \epsilon < f(x) < f(0) + \epsilon[/itex] for all x in [itex][-\delta , \delta].[/itex] Choose [itex]0<h<\delta[/itex]. Then [tex] (f(0)-\epsilon) \int_{-h}^{h}{\frac{h} {h^2+x^2}}dx < \int_{-h}^{h}{\frac{h} {h^2+x^2}}f(x)dx < (f(0)+\epsilon) \int_{-h}^{h}{\frac{h} {h^2+x^2}}dx[/tex] [tex]{\pi}(f(0)-\epsilon) ≤ \lim_{h\rightarrow 0^+} {\int_{-h}^{h}{\frac{h} {h^2+x^2}}f(x)dx} ≤ \pi(f(0)+\epsilon) [/tex] taking the limits by part (c) and this is true for any [itex]\epsilon > 0 [/itex] so [tex] \lim_{h\rightarrow 0^+} {\int_{-h}^{h}{\frac{h} {h^2+x^2}}f(x)dx} = {\pi}f(0) [/tex]
Now consider [itex]\int_{h+\delta'}^1{\frac{h} {h^2+x^2}}f(x)dx [/itex] for any [itex]\delta' > 0. [/itex]
[tex] \frac{h} {h^2+1}\int_{h+\delta'}^1{f(x)dx} < \int_{h+\delta'}^1{\frac{h} {h^2+x^2}}f(x)dx < \frac{h} {h^2+(h+\delta')^2}\int_{h+\delta'}^1{f(x)dx}[/tex] (the maximum and minimum values of the fraction occur at [itex]h+\delta'[/itex] and [itex]1[/itex] respectively). Therefore, since the integral is a number, [tex]
\lim_{h\rightarrow 0^+} {\int_{h+\delta'}^1{\frac{h} {h^2+x^2}}f(x)dx} = 0 [/tex]
and this is true for any [itex]\delta'>0.[/itex]
Finally consider [itex]\int_{h}^{h+\delta'}{\frac{h} {h^2+x^2}}f(x)dx. [/itex] Add the requirement that [itex]h+\delta' < \delta[/itex] so that [tex]
\frac{h} {h^2+1}\int_{h}^{h+\delta'}{f(x)dx} < \int_{h}^{h+\delta'}{\frac{h} {h^2+x^2}}f(x)dx < (f(0)+\epsilon) \int_{h}^{h+\delta'} {\frac{h} {2h^2}dx} = \frac{\delta'}{2h}(f(0)+\epsilon) < \frac{h}{2}(f(0)-\epsilon) [/tex] if we also require that [itex]\delta'<h^2[/itex]. Since we can make this smaller than any number by choosing small enough [itex]h[/itex] and [itex]\delta'[/itex] with the given requirements, this shows that [tex] \lim_{h\rightarrow 0^+} {\int_{h}^{h+\delta'}{\frac{h} {h^2+x^2}}f(x)dx} = 0 [/tex] for any small enough [itex]\delta'[/itex].
Combining all three results shows that [tex] \lim_{h\rightarrow 0^+} {\int_{-1}^{1}{\frac{h} {h^2+x^2}}f(x)dx} = \lim_{h\rightarrow 0^+} {\int_{-h}^{h}{\frac{h} {h^2+x^2}}f(x)dx} + 2\lim_{h\rightarrow 0^+} {\int_{h+\delta'}^1{\frac{h} {h^2+x^2}}f(x)dx} + 2\lim_{h\rightarrow 0^+} {\int_{h}^{h+\delta'}{\frac{h} {h^2+x^2}}f(x)dx} = {\pi}f(0) + 0 + 0 = {\pi}f(0) [/tex] (using symmetry).
QED
Ok that was long and maybe confusing, I'm sorry... but that's the proof I could find. Can you tell me if there are any gaps or incorrect assumptions in the proof? Thanks!