- #1
moviefan91
- 1
- 0
Proof for x^n-y^n=(x-y)(x^n-1+...+y^n-1)
The question asks to prove that for any n[itex]\geq[/itex]1,
[itex]x^{n}[/itex]-[itex]y^{n}[/itex]=(x-y)([itex]x^{n-1}[/itex]+[itex]x^{n-2}[/itex]y+...+[itex]y^{n-1}[/itex])
[itex]x^{n}[/itex]-[itex]y^{n}[/itex]=(x-y)([itex]x^{n-1}[/itex]+[itex]x^{n-2}[/itex]y+...+[itex]y^{n-1}[/itex])
So far, I used induction.
So for n=1, x-y=x-y
Second step, I assume that n=k is true:
[itex]x^{k}[/itex]-[itex]y^{k}[/itex]=(x-y)([itex]x^{k-1}[/itex]+[itex]x^{k-2}[/itex]y+...+[itex]y^{k-1}[/itex])
I get stuck at n=k+1.
[itex]x^{k+1}[/itex]-[itex]y^{k+1}[/itex]=(x-y)([itex]x^{k}[/itex]+[itex]x^{k-1}[/itex]y+...+[itex]y^{k}[/itex])
When I expand RHS, I get:
[itex]x^{k+1}[/itex]-[itex]x^{k}[/itex]y+[itex]x^k{}[/itex]y-[itex]x^{k-1}[/itex][itex]y^{2}[/itex]+...+x[itex]y^{k}[/itex]-[itex]y^{k+1}[/itex]
I think that I need to cancel things so I can be left only with [itex]x^{k+1}[/itex]-[itex]y^{k+1}[/itex], but I always have terms in the middle which do not cancel out.
What am I doing wrong?
Homework Statement
The question asks to prove that for any n[itex]\geq[/itex]1,
[itex]x^{n}[/itex]-[itex]y^{n}[/itex]=(x-y)([itex]x^{n-1}[/itex]+[itex]x^{n-2}[/itex]y+...+[itex]y^{n-1}[/itex])
Homework Equations
[itex]x^{n}[/itex]-[itex]y^{n}[/itex]=(x-y)([itex]x^{n-1}[/itex]+[itex]x^{n-2}[/itex]y+...+[itex]y^{n-1}[/itex])
The Attempt at a Solution
So far, I used induction.
So for n=1, x-y=x-y
Second step, I assume that n=k is true:
[itex]x^{k}[/itex]-[itex]y^{k}[/itex]=(x-y)([itex]x^{k-1}[/itex]+[itex]x^{k-2}[/itex]y+...+[itex]y^{k-1}[/itex])
I get stuck at n=k+1.
[itex]x^{k+1}[/itex]-[itex]y^{k+1}[/itex]=(x-y)([itex]x^{k}[/itex]+[itex]x^{k-1}[/itex]y+...+[itex]y^{k}[/itex])
When I expand RHS, I get:
[itex]x^{k+1}[/itex]-[itex]x^{k}[/itex]y+[itex]x^k{}[/itex]y-[itex]x^{k-1}[/itex][itex]y^{2}[/itex]+...+x[itex]y^{k}[/itex]-[itex]y^{k+1}[/itex]
I think that I need to cancel things so I can be left only with [itex]x^{k+1}[/itex]-[itex]y^{k+1}[/itex], but I always have terms in the middle which do not cancel out.
What am I doing wrong?