- #1
pondzo
- 169
- 0
Homework Statement
Let ##\sigma_4## denote the group of permutations of ##\{1,2,3,4\}## and consider the following elements in ##\sigma_4##:
##x=\bigg(\begin{matrix}1&&2&&3&&4\\2&&1&&4&&3\end{matrix}\bigg);~~~~~~~~~y=\bigg(\begin{matrix}1&&2&&3&&4\\3&&4&&1&&2\end{matrix}\bigg)##
##\sigma=\bigg(\begin{matrix}1&&2&&3&&4\\2&&3&&1&&4\end{matrix}\bigg);~~~~~~~~~\tau=\bigg(\begin{matrix}1&&2&&3&&4\\2&&1&&3&&4\end{matrix}\bigg)##
and put ##K=\{1,x,y,xy\},~~~~~~~ Q=\{1,\sigma,\sigma^2,\tau,\sigma \tau,\sigma^2\tau\}##
Show that if ##q\in Q## and ##k\in K## then ##qkq^{-1}\in K##.
Homework Equations
I have shown ##K## and ##Q## are subgroups of ##\sigma_4## that ##\sigma_4=KQ=\{kq~~;~~k\in K,~q\in Q\}##.
And I have found the following relations: ##x^2=1,y^2=1,yx=xy;~~\sigma^3=1,\tau^2=1,\tau\sigma=\sigma^2\tau##
The Attempt at a Solution
I would go through and calculate ##qkq^{-1}## for each ##k## and each ##q## but I know there must be a shorter way. Do you know of it?