- #1
Ishika_96_sparkles
- 57
- 22
- Homework Statement
- Prove that ##\vec{\nabla} \big[\vec{M}\cdot\vec{\nabla} \big(\frac{1}{r}\big)\big]=\frac{3(\vec{M}\cdot\vec{r})\vec{r}}{r^5}-\frac{\vec{M}}{r^3}##
- Relevant Equations
- ##\vec{\nabla} \big(\frac{1}{r}\big) =-\frac{\vec{r}}{r^3}##
During the calculations, I tried to solve the following
$$ \vec{\nabla} \big[\vec{M}\cdot\vec{\nabla} \big(\frac{1}{r}\big)\big] = -\big[\vec{\nabla}(\vec{M}\cdot \vec{r}) \frac{1}{r^3} + (\vec{M}\cdot \vec{r}) \big(\vec{\nabla} \frac{1}{r^3}\big) \big]$$
by solving the first term i.e., ##\frac{1}{r^3} \vec{\nabla}(\vec{M}\cdot \vec{r}) ## by using the following ways
1) ##\frac{d (\vec{A}\cdot\vec{B})}{dt}=\frac{d \vec{A}}{dt} \cdot\vec{B} +\vec{A}\cdot \frac{d \vec{B}}{dt}## and by
2) ##\frac{d (\vec{A}\cdot\vec{B})}{dt}=\frac{d (A_xB_x+A_yB_y+A_zB_z)}{dt}##.
We keep in mind that ##\vec{A} ## here is a constant vector.
1) $$ \vec{\nabla}(\vec{M}\cdot \vec{r})= (\vec{\nabla}\vec{M}) \cdot \vec{r} +\vec{M}\cdot ( \vec{\nabla} \vec{r})$$
now, since ##\vec{\nabla}\vec{A}## only makes sense if we have a dot product between them i.e., the divergence ##\vec{\nabla}\cdot\vec{A}##. Therefore, we proceed, by assuming a dot product here to get
$$(\vec{\nabla} \cdot \vec{M}) \cdot \vec{r} +\vec{M} \cdot ( \vec{\nabla} \cdot \vec{r})= 0 +\vec{M}\cdot ( \vec{\nabla} \cdot \vec{r})$$
since, ##\vec{M}## is a constant vector and ##\vec{r}=x\hat{i}+y\hat{j}+z\hat{k}##. Now, ##\vec{\nabla} \cdot \vec{r}=3## and thus, we get the answer ##3\vec{M}## and hence ##-\frac{\vec{3M}}{r^3}##.
However, by doing the method 2) we get
$$\vec{\nabla}(\vec{M}\cdot \vec{r})= \vec{\nabla}(M_1 x+M_2 y+M_3 z)$$
This is a gradient of a scalar and thus could be written as ##(M_1\vec{\nabla} x+M_2 \vec{\nabla}y+M_3 \vec{\nabla}z) =(M_1 \hat{i}+M_2 \hat{j}+M_3 \hat{k})=\vec{M}##
What am I doing wrong here?
$$ \vec{\nabla} \big[\vec{M}\cdot\vec{\nabla} \big(\frac{1}{r}\big)\big] = -\big[\vec{\nabla}(\vec{M}\cdot \vec{r}) \frac{1}{r^3} + (\vec{M}\cdot \vec{r}) \big(\vec{\nabla} \frac{1}{r^3}\big) \big]$$
by solving the first term i.e., ##\frac{1}{r^3} \vec{\nabla}(\vec{M}\cdot \vec{r}) ## by using the following ways
1) ##\frac{d (\vec{A}\cdot\vec{B})}{dt}=\frac{d \vec{A}}{dt} \cdot\vec{B} +\vec{A}\cdot \frac{d \vec{B}}{dt}## and by
2) ##\frac{d (\vec{A}\cdot\vec{B})}{dt}=\frac{d (A_xB_x+A_yB_y+A_zB_z)}{dt}##.
We keep in mind that ##\vec{A} ## here is a constant vector.
1) $$ \vec{\nabla}(\vec{M}\cdot \vec{r})= (\vec{\nabla}\vec{M}) \cdot \vec{r} +\vec{M}\cdot ( \vec{\nabla} \vec{r})$$
now, since ##\vec{\nabla}\vec{A}## only makes sense if we have a dot product between them i.e., the divergence ##\vec{\nabla}\cdot\vec{A}##. Therefore, we proceed, by assuming a dot product here to get
$$(\vec{\nabla} \cdot \vec{M}) \cdot \vec{r} +\vec{M} \cdot ( \vec{\nabla} \cdot \vec{r})= 0 +\vec{M}\cdot ( \vec{\nabla} \cdot \vec{r})$$
since, ##\vec{M}## is a constant vector and ##\vec{r}=x\hat{i}+y\hat{j}+z\hat{k}##. Now, ##\vec{\nabla} \cdot \vec{r}=3## and thus, we get the answer ##3\vec{M}## and hence ##-\frac{\vec{3M}}{r^3}##.
However, by doing the method 2) we get
$$\vec{\nabla}(\vec{M}\cdot \vec{r})= \vec{\nabla}(M_1 x+M_2 y+M_3 z)$$
This is a gradient of a scalar and thus could be written as ##(M_1\vec{\nabla} x+M_2 \vec{\nabla}y+M_3 \vec{\nabla}z) =(M_1 \hat{i}+M_2 \hat{j}+M_3 \hat{k})=\vec{M}##
What am I doing wrong here?
Last edited: