- #1
Mona1990
- 13
- 0
Hi!
I was wondering if someone could give me a couple hints on how to tackle the following proof!
Let f(x,y)= [ (lxl ^a)(lyl^b) ]/ [(lxl^c) + lyl^d] where a,b,c,d are positive numbers.
prove that if (a/c) + (b/d) > 1
then limit as (x,y) -> (0,0) of f(x,y) exists and equals zero.
thanks!
I was wondering if someone could give me a couple hints on how to tackle the following proof!
Let f(x,y)= [ (lxl ^a)(lyl^b) ]/ [(lxl^c) + lyl^d] where a,b,c,d are positive numbers.
prove that if (a/c) + (b/d) > 1
then limit as (x,y) -> (0,0) of f(x,y) exists and equals zero.
thanks!