- #1
alyafey22
Gold Member
MHB
- 1,561
- 1
I want to prove the Cauchy integral formula :
[tex] \oint_{\gamma} \, \frac{f(z)}{z-z_0}\,dz= 2\pi i f(z_0) [/tex]
[tex]\text{so we will integrate along a circle that contains the pole .}[/tex]
[tex]|z-z_0|= \delta \,\text{ which is a circle centered at the pole and has a radius }\delta\,\,[/tex]
[tex] z =z_0+\delta e^{i\theta }\,\, so \,\,dz =i\delta e^{i\theta }\,d\theta[/tex]
[tex]\text{We will make the radius as small as possible to contain the pole . }[/tex]
[tex]\lim_{\delta \, \to 0 } \, \oint_{0}^{2\pi} \, \frac{f(z_0 + \delta \, e^{i\theta })\cdot i\delta e^{i\theta } }{z_0+ \delta \, e^{i\theta }-z_0}\,d\theta[/tex]
[tex]\lim_{\delta \, \to 0 }\, \oint_{0}^{2\pi} \, \frac{f(z_0 + \delta \, e^{i\theta })\cdot i\delta e^{i\theta } }{\delta \, e^{i\theta }}\,d\theta[/tex]
[tex]\lim_{\delta \, \to 0 }\,i \oint_{0}^{2\pi} \,f(z_0 + \delta \, e^{i\theta }) \,d\theta[/tex][tex]i \oint_{0}^{2\pi} \,f(z_0) \,d\theta[/tex]
[tex]if(z_0) \oint_{0}^{2\pi} d\theta=2\pi i f(z_0)\text{ W.R.T}[/tex]
[tex] \oint_{\gamma} \, \frac{f(z)}{z-z_0}\,dz= 2\pi i f(z_0) [/tex]
[tex]\text{so we will integrate along a circle that contains the pole .}[/tex]
[tex]|z-z_0|= \delta \,\text{ which is a circle centered at the pole and has a radius }\delta\,\,[/tex]
[tex] z =z_0+\delta e^{i\theta }\,\, so \,\,dz =i\delta e^{i\theta }\,d\theta[/tex]
[tex]\text{We will make the radius as small as possible to contain the pole . }[/tex]
[tex]\lim_{\delta \, \to 0 } \, \oint_{0}^{2\pi} \, \frac{f(z_0 + \delta \, e^{i\theta })\cdot i\delta e^{i\theta } }{z_0+ \delta \, e^{i\theta }-z_0}\,d\theta[/tex]
[tex]\lim_{\delta \, \to 0 }\, \oint_{0}^{2\pi} \, \frac{f(z_0 + \delta \, e^{i\theta })\cdot i\delta e^{i\theta } }{\delta \, e^{i\theta }}\,d\theta[/tex]
[tex]\lim_{\delta \, \to 0 }\,i \oint_{0}^{2\pi} \,f(z_0 + \delta \, e^{i\theta }) \,d\theta[/tex][tex]i \oint_{0}^{2\pi} \,f(z_0) \,d\theta[/tex]
[tex]if(z_0) \oint_{0}^{2\pi} d\theta=2\pi i f(z_0)\text{ W.R.T}[/tex]