- #1
ognik
- 643
- 2
Hi, looking at a proof of Cauchy Integral formula, I have (at least) one question, starting from the step below
$ \int_{{C}}^{}\frac{f(z)}{z-{z}_{0}} \,dz - \int_{{C}_{2}}\frac{f(z)}{z-{z}_{0}} \,dz = 0 $ , where $ {C}_{2}$ is the smaller path around the singularity at $ {z}_{0} $
Let $z={z}_{0} + re^{i\theta} $
Then $ \int_{{c}_{2}}^{}\frac{f(z)}{z-{z}_{0}} \,dz = \int_{{c}_{2}}^{}\frac{f({z}_{0} + re^{i\theta})}{re^{i\theta}}ire^{i\theta}\,dz $
Letting r->0 gives $ = if({z}_{0})\int_{{C}_{2}}^{} \,d\theta =2\pi i f({z}_{0}) $
I follow all that (hope I explain this well enough) - but after letting $z={z}_{0} + re^{i\theta} $, isn't this now different to the f(z) of the original contour? We let r tend to 0 for $ {C}_{2}$ , but C is some larger R?
$ \int_{{C}}^{}\frac{f(z)}{z-{z}_{0}} \,dz - \int_{{C}_{2}}\frac{f(z)}{z-{z}_{0}} \,dz = 0 $ , where $ {C}_{2}$ is the smaller path around the singularity at $ {z}_{0} $
Let $z={z}_{0} + re^{i\theta} $
Then $ \int_{{c}_{2}}^{}\frac{f(z)}{z-{z}_{0}} \,dz = \int_{{c}_{2}}^{}\frac{f({z}_{0} + re^{i\theta})}{re^{i\theta}}ire^{i\theta}\,dz $
Letting r->0 gives $ = if({z}_{0})\int_{{C}_{2}}^{} \,d\theta =2\pi i f({z}_{0}) $
I follow all that (hope I explain this well enough) - but after letting $z={z}_{0} + re^{i\theta} $, isn't this now different to the f(z) of the original contour? We let r tend to 0 for $ {C}_{2}$ , but C is some larger R?