- #1
cliowa
- 191
- 0
This should be a proof of the fact that exp(x)*exp(y)=exp(x+y). Have a look at it:
[tex]
\begin{align*}
\exp(x)\cdot\exp(y)&=\left(\sum_{k=0}^{\infty}\frac{x^k}{k!}\right)\cdot\left(\sum_{\ell=0}^{\infty}\frac{y^{\ell}}{\ell!}\right)\\
&=\sum_{k,\ell=0}^{\infty}\frac{x^ky^{\ell}}{k!\ell!}=\sum_{k=0}^{\infty}\left(\sum_{\ell=0}^{\infty}\frac{x^ky^{\ell}}{k!\ell!}\right)\\
&\stackrel{(\ell=n-k)}{=}\sum_{k=0}^{\infty}\left(\sum_{n=k}^{\infty}\frac{n!}{n!}\frac{x^ky^{n-k}}{k!(n-k)!}\right)\\
&=\sum_{k=0}^{\infty}\left(\sum_{n=k}^{\infty}\left(\begin{array}{*{1}{c}}n\\k\end{array}\right)\frac{x^ky^{n-k}}{n!}\right)\\
&=\sum_{k=0}^{\infty}\frac{\left(\sum_{k=0}^n\left(\begin{array}{*{1}{c}}n\\k\end{array}\right)x^ky^{n-k}\right)}{n!}\\
&=\sum_{n=0}^{\infty}\frac{(x+y)^n}{n!}=\exp(x+y)
\end{align*}
[/tex]
Now, I understand everything fairly well, except for one step: what is the operation to get from the 4th line to the 5th?
Help will be appreciated very much.
Best regards...Cliowa
[tex]
\begin{align*}
\exp(x)\cdot\exp(y)&=\left(\sum_{k=0}^{\infty}\frac{x^k}{k!}\right)\cdot\left(\sum_{\ell=0}^{\infty}\frac{y^{\ell}}{\ell!}\right)\\
&=\sum_{k,\ell=0}^{\infty}\frac{x^ky^{\ell}}{k!\ell!}=\sum_{k=0}^{\infty}\left(\sum_{\ell=0}^{\infty}\frac{x^ky^{\ell}}{k!\ell!}\right)\\
&\stackrel{(\ell=n-k)}{=}\sum_{k=0}^{\infty}\left(\sum_{n=k}^{\infty}\frac{n!}{n!}\frac{x^ky^{n-k}}{k!(n-k)!}\right)\\
&=\sum_{k=0}^{\infty}\left(\sum_{n=k}^{\infty}\left(\begin{array}{*{1}{c}}n\\k\end{array}\right)\frac{x^ky^{n-k}}{n!}\right)\\
&=\sum_{k=0}^{\infty}\frac{\left(\sum_{k=0}^n\left(\begin{array}{*{1}{c}}n\\k\end{array}\right)x^ky^{n-k}\right)}{n!}\\
&=\sum_{n=0}^{\infty}\frac{(x+y)^n}{n!}=\exp(x+y)
\end{align*}
[/tex]
Now, I understand everything fairly well, except for one step: what is the operation to get from the 4th line to the 5th?
Help will be appreciated very much.
Best regards...Cliowa