- #1
3.1415926535
- 80
- 0
As you might have already found out G(D) is a differential operator. I can prove this property for G(D)=D^n , but I would like to know the general proof.
I would like an answer with the same notation as I use in this following proof, Thank you in advance
[tex]G(D)(e^{rx}Y(x))=e^{rx}G(D+r)Y(x)[/tex]
Proof of
[tex]D^{n}(e^{rx}Y(x)))=e^{rx}(D+r)^{n}Y[/tex]
[tex]D^{n}(e^{rx}Y(x)))=(e^{rx}Y)^{(n)}=(e^{rx}Y)^{n}Y+\binom{n}{1}(e^{rx})^{(n-1)}{Y}'+...e^{rx}Y^{(n)}=e^{rx}(r^nY+(\binom{n}{1})r^{n-1}Y'+...Y^{(n)})=e^{rx}(r^{n}+(\binom{n}{1})r^{n-1}D+...+D^{n})Y=e^{rx}(D+r)^{n}Y[/tex]
I would like an answer with the same notation as I use in this following proof, Thank you in advance
[tex]G(D)(e^{rx}Y(x))=e^{rx}G(D+r)Y(x)[/tex]
Proof of
[tex]D^{n}(e^{rx}Y(x)))=e^{rx}(D+r)^{n}Y[/tex]
[tex]D^{n}(e^{rx}Y(x)))=(e^{rx}Y)^{(n)}=(e^{rx}Y)^{n}Y+\binom{n}{1}(e^{rx})^{(n-1)}{Y}'+...e^{rx}Y^{(n)}=e^{rx}(r^nY+(\binom{n}{1})r^{n-1}Y'+...Y^{(n)})=e^{rx}(r^{n}+(\binom{n}{1})r^{n-1}D+...+D^{n})Y=e^{rx}(D+r)^{n}Y[/tex]
Last edited: