- #1
mathjam0990
- 29
- 0
Let G be a subgroup of Sym(X) and ρ ∈ G. Prove that Gρ(x) = ρGxρ−1, where ρGxρ−1 = {ρgρ−1|g ∈ Gx}
What I Know: I need to somehow prove the left is contained in the right and the right is contained in the left.
What I Have Done: Well based on the definition of a stabilizer Gx I assumed that Gρ(x) = {g'(p(x))=p(x) | g' w/in G} Sorry, I'm not sure if that is correct or not.
Then for (Left contained in right): For all g' w/in G, g'(p(x)=p(x) ---> (g'p)(x)=p(x) ---> pg'p-1p-1p(x)=p(p(x))p-1p-1 (multiplied both sides by pp-1p-1)
--->pg'p-1(x)=x (by associativity for a group) and that is contained in pgp-1 which equals ρGxp−1
Haven't attempted the "right contained in the left" because I'm not even sure if I even did the initial part correctly, I feel like I messed up. Any help please??
Thank you!
What I Know: I need to somehow prove the left is contained in the right and the right is contained in the left.
What I Have Done: Well based on the definition of a stabilizer Gx I assumed that Gρ(x) = {g'(p(x))=p(x) | g' w/in G} Sorry, I'm not sure if that is correct or not.
Then for (Left contained in right): For all g' w/in G, g'(p(x)=p(x) ---> (g'p)(x)=p(x) ---> pg'p-1p-1p(x)=p(p(x))p-1p-1 (multiplied both sides by pp-1p-1)
--->pg'p-1(x)=x (by associativity for a group) and that is contained in pgp-1 which equals ρGxp−1
Haven't attempted the "right contained in the left" because I'm not even sure if I even did the initial part correctly, I feel like I messed up. Any help please??
Thank you!