- #1
Gear300
- 1,213
- 9
- TL;DR Summary
- imaginary algebra
I saw a proof in which they came up with the ith root of i through the typical algebra.
$$
i^{1/i} = i^{-i} = e^{i\frac{\pi}{2} \cdot -i} = e^{\frac{\pi}{2}} ~.
$$
But it seems the proof is entirely algebraic, so we have no grounds for thinking it works anywhere. The only exception might be an analytic connection with power series, like a Laurent series. Is there such a connection, or is this as ad hoc as it seems?
$$
i^{1/i} = i^{-i} = e^{i\frac{\pi}{2} \cdot -i} = e^{\frac{\pi}{2}} ~.
$$
But it seems the proof is entirely algebraic, so we have no grounds for thinking it works anywhere. The only exception might be an analytic connection with power series, like a Laurent series. Is there such a connection, or is this as ad hoc as it seems?