- #1
Aziza
- 190
- 1
Prove that ∇.(u×v) = v.(∇×u) - u.(∇×v), where "." means dot product and u,v are vectors.
So by scalar product rule, A.(B×C) = C.(A×B)
So applying same logic to above identity, shouldn't the left hand side just be equal to v.(∇×u)?
Or just to -u.(∇×v), since A.(B×C) = -B.(A×C) ?
So by scalar product rule, A.(B×C) = C.(A×B)
So applying same logic to above identity, shouldn't the left hand side just be equal to v.(∇×u)?
Or just to -u.(∇×v), since A.(B×C) = -B.(A×C) ?