- #1
Dethrone
- 717
- 0
Let ${a_n}$ and ${b_n}$ be two convergent sequences such that $\lim_{{n}\to{\infty}}|a_n-b_n|=0$. Give an $\epsilon-N$ proof to show that $\lim_{{n}\to{\infty}}a_n=\lim_{{n}\to{\infty}}b_n$.
Right now, I've just said without loss of generality, assume that $a_n>b_n$ for all $n>N$, then since $\lim_{{n}\to{\infty}}|a_n-b_n|=0$, we have $\lim_{{n}\to{\infty}}a_n-\lim_{{n}\to{\infty}}b_n=0$ and the results follow.
But I haven't used "$\epsilon$" at all...I'm thinking I need to prove that $\forall \epsilon >0$, $\exists N$ s.t whenever $n>N, |a_n-\lim_{{n}\to{\infty}}b_n|=\epsilon$.
Right now, I've just said without loss of generality, assume that $a_n>b_n$ for all $n>N$, then since $\lim_{{n}\to{\infty}}|a_n-b_n|=0$, we have $\lim_{{n}\to{\infty}}a_n-\lim_{{n}\to{\infty}}b_n=0$ and the results follow.
But I haven't used "$\epsilon$" at all...I'm thinking I need to prove that $\forall \epsilon >0$, $\exists N$ s.t whenever $n>N, |a_n-\lim_{{n}\to{\infty}}b_n|=\epsilon$.