- #1
bjgawp
- 84
- 0
Edit: Whoops. Was intending to post this in the homework forum but accidentally didn't...
Question: If [tex]\lim_{x \to a} f(x) = L[/tex] and [tex]\lim_{x \to a} g(x) = M[/tex], then [tex]\lim_{x \to a} (f(x)g(x)) = LM[/tex].
Proof from James Stewarts':
Question: If [tex]\lim_{x \to a} f(x) = L[/tex] and [tex]\lim_{x \to a} g(x) = M[/tex], then [tex]\lim_{x \to a} (f(x)g(x)) = LM[/tex].
Proof from James Stewarts':
Problem: I don't exactly how they made the statements with the *s. Where did these inequalities come from and how can they be asserted? Also, I'm kind of iffy on why we need three [tex]\delta[/tex]s ... Any help would be appreciated!Let [tex]\epsilon > 0[/tex] . We want to find [tex]\delta > 0[/tex] such that [tex]|f(x)g(x) - LM|[/tex] whenever [tex]0 < |x - a| < \delta[/tex].
[tex]\left| f(x)g(x) - LM \right|[/tex]
[tex]= \left| f(x)g(x) - Lg(x) + Lg(x) - LM \right|[/tex]
[tex]= \left|\left[f(x) - L\right]g(x) + L\left[g(x) - M\right]\right|[/tex]
[tex]\leq \left|\left[f(x) - L\right]\left(g(x)\right)\right| + \left|\left(L\right)\left[g(x) - M\right]\right|[/tex] (Triangle inequality)
[tex]= \left|f(x) - L\right|\left|g(x)\right| + \left|L\right|\left|g(x) - M\right|[/tex]
We want to make each of these terms less than [tex]\frac{\epsilon}{2}[/tex].
Since [tex]\lim_{x \to a} g(x) = M[/tex], there is a number [tex]\delta_{1} > 0[/tex] such that: [tex]|g(x) - M| < \frac{\epsilon}{2\left(1 + |L|\right)}[/tex]* whenever [tex]0 < |x - a| < \delta_{1}[/tex].
Also, there is [tex]\delta_{2}>0[/tex] such that if [tex]0 < |x - a| < \delta_{2}[/tex], then [tex]|g(x) - M| < 1[/tex] and therefore:
[tex]\left|g(x)\right| = \left|g(x) - M + M\right| \hspace{4mm} \leq \hspace{4mm} \left|g(x) - M\right| + \left|M\right| \hspace{4mm}< \hspace{4mm} 1 + \left|M\right|[/tex]
Since [tex]\lim_{x \to a}f(x) = L[/tex], there is a number [tex]\delta_{3}>0[/tex] such that: [tex]\left|f(x) - L\right|<\frac{\epsilon}{2\left(1+|M|\right)}[/tex]* whenever [tex]0 < |x - a| < \delta_{3}[/tex].
Let [tex]\delta = min\left\{\delta_{1},\delta_{2},\delta_{3}\right\}[/tex]. If [tex]0 < |x - a| < \delta[/tex].
Then we have [tex]0 < |x-a| <\delta_{1}, \hspace{4mm} 0 < | x-a| < \delta_{2}, \hspace{4mm} 0 <|x-a|<\delta_{3}[/tex]
so we can combine the inequalities to obtain:
[tex]\left|f(x)g(x) - LM\right|[/tex]
[tex] \leq \hspace{4mm}\left|f(x)-L\right| \left|g(x)\right| \hspace{4mm}+ \hspace{4mm}\left|L\right|\left|g(x)-M\right|[/tex]
[tex]= \frac{\epsilon}{2\left(1 + |M|\right)} \left(1 + |M|\right) + |L| \frac{\epsilon}{2\left(1 + |L|\right)}[/tex]
[tex]< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon[/tex]
Therefore, [tex]\lim_{x \to a} f(x)g(x) = LM[/tex]