- #1
mynameisfunk
- 125
- 0
ok i am stumped on a proof i am trying to construct of a metric:
d(x,y)=[tex]\frac{|x-y|}{1+|x-y|}[/tex]
so, out of the 3 requirements to be a metric, the first 2 are trivial and I am just working on proving the triangle inequality...
i need [tex]\frac{|x-y|}{1+|x-y|}[/tex] [tex]\leq[/tex] [tex]\frac{|x-z|}{1+|x-z|}[/tex] + [tex]\frac{|z-y|}{1+|z-y|}[/tex]
p2(1+q+r+qr) [tex]\leq[/tex] q2(1+p+r+pr)+r2(1+p+q+pq)
can i now go to:
p(1+q+r+qr) [tex]\leq[/tex] q(1+p+r+pr)+r(1+p+q+pq) ?
d(x,y)=[tex]\frac{|x-y|}{1+|x-y|}[/tex]
so, out of the 3 requirements to be a metric, the first 2 are trivial and I am just working on proving the triangle inequality...
i need [tex]\frac{|x-y|}{1+|x-y|}[/tex] [tex]\leq[/tex] [tex]\frac{|x-z|}{1+|x-z|}[/tex] + [tex]\frac{|z-y|}{1+|z-y|}[/tex]
p2(1+q+r+qr) [tex]\leq[/tex] q2(1+p+r+pr)+r2(1+p+q+pq)
can i now go to:
p(1+q+r+qr) [tex]\leq[/tex] q(1+p+r+pr)+r(1+p+q+pq) ?