MHB Proof of Parallelogram ABCD: Midpoint X & Y Show Area $\frac{1}{4}$

AI Thread Summary
To prove that the area of triangle ABX is one-fourth the area of parallelogram ABCD, start by establishing that triangles DBC and DBA are congruent using the SAS criterion. Next, construct segment XY, connecting midpoints X and Y of sides AD and BC, respectively, which leads to the conclusion that triangles ABX and XYB are congruent by SSS. The midpoint theorem indicates that AX equals XD and BY equals YC, reinforcing the relationships between the segments. Additionally, drawing a perpendicular from point X to line AB shows that its length is half that of the perpendicular from point D to line AB, allowing for the area calculations. Thus, the area of triangle ABX can be confirmed as one-fourth that of parallelogram ABCD.
mathlearn
Messages
331
Reaction score
0
ABCD is a parallelogram . X is the midpoint of AD & Y is the midpoint of BC. Show that the area of $\triangle {ABX}$ is $\frac{1}{4}$ the area of ABCD

View attachment 6102

Can you help me with this proof ? were should i start ? I think It should be by proving

$\triangle{DBC} \cong \triangle{DBA} $ using SAS as DB is a common side DC= AB as ABCD is a parallelogram, $\angle {BDC} = \angle{DBA} $ alternate angles

And I can also predict that the use of midpoint theorem here

Many Thanks :)
 

Attachments

  • pargram.png
    pargram.png
    1.7 KB · Views: 134
Mathematics news on Phys.org
Start by constructing segment XY. What can be said about triangles ABX and XYB?
 
Another way: Draw the perpendicular to AB from X. Show, using "similar triangles", that its length is half the length of the perpendicular to AB from D. The result follows immediately from the formulas for the areas of triangle and parallelogram.
 
greg1313 said:
Start by constructing segment XY. What can be said about triangles ABX and XYB?

They are congruent! But how can they be proved using $SSS$ or $SAS$ or $AAS$

View attachment 6104

Many Thanks :)
 

Attachments

  • pargram.png
    pargram.png
    1.8 KB · Views: 119
I'd use SSS.
 
I wonder what are the uses of joing the two midpoints of the sides x & y.

It helps to state that,

AX=XD
& BY=YC

And can AB=XY be or DC=XY be said using the midpoint theorem?

Many Thanks :)
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top