- #1
Dustinsfl
- 2,281
- 5
$$
P(r,\theta) = \frac{1}{\pi}\left(\frac{1}{2} + \sum_{n = 1}^{\infty} r^n\cos\theta\right) = \frac{1}{2\pi}\frac{1 - r^2}{1 - 2r\cos\theta + r^2}
$$Prove that $P(r,\theta) > 0$ for all $r$ and $\theta$ where $0\leq r < 1$ and $-\pi\leq\theta\leq\pi$.
How can I start this?
P(r,\theta) = \frac{1}{\pi}\left(\frac{1}{2} + \sum_{n = 1}^{\infty} r^n\cos\theta\right) = \frac{1}{2\pi}\frac{1 - r^2}{1 - 2r\cos\theta + r^2}
$$Prove that $P(r,\theta) > 0$ for all $r$ and $\theta$ where $0\leq r < 1$ and $-\pi\leq\theta\leq\pi$.
How can I start this?