- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
I am looking at the following sentence:
For any natural numbers $m,n$ it holds:
I tried to prove the second sentence like that:
$$m<n \rightarrow m \in n \rightarrow m \subset n \wedge \{m\} \subset n \rightarrow m \cup \{ m \} \subset n \rightarrow m \cup \{m \}=n \lor m \cup \{ m \} \in n$$
From the relation $m \cup \{m \} \in n$ we get that $m \cup \{ m \} \in n \cup \{ n \} \rightarrow m' \in n' \rightarrow m'<n'$.
$$m'<n' \rightarrow m' \in n' \rightarrow m \cup \{ m \} \in n \cup \{ n \} $$
$$m \in m \cup \{ m \} \rightarrow m \in n \cup \{ n \} \rightarrow m \subset n \cup \{ n \} \rightarrow m \subset n \lor m \subset \{ n \}$$
From the relation $m \subset n$ we conclude that $m \in n \lor m=n$.
How could we reject the case $m=n$ ? (Thinking)
I am looking at the following sentence:
For any natural numbers $m,n$ it holds:
- $m \leq n \leftrightarrow m' \leq n'$
- $m<n \leftrightarrow m'<n'$
- $m<n' \leftrightarrow m \leq n$
- $m \leq n' \leftrightarrow m \leq n \lor m=n'$
I tried to prove the second sentence like that:
$$m<n \rightarrow m \in n \rightarrow m \subset n \wedge \{m\} \subset n \rightarrow m \cup \{ m \} \subset n \rightarrow m \cup \{m \}=n \lor m \cup \{ m \} \in n$$
From the relation $m \cup \{m \} \in n$ we get that $m \cup \{ m \} \in n \cup \{ n \} \rightarrow m' \in n' \rightarrow m'<n'$.
$$m'<n' \rightarrow m' \in n' \rightarrow m \cup \{ m \} \in n \cup \{ n \} $$
$$m \in m \cup \{ m \} \rightarrow m \in n \cup \{ n \} \rightarrow m \subset n \cup \{ n \} \rightarrow m \subset n \lor m \subset \{ n \}$$
From the relation $m \subset n$ we conclude that $m \in n \lor m=n$.
How could we reject the case $m=n$ ? (Thinking)