Proof of Second Sentence:$m<n \leftrightarrow m'<n'$

  • MHB
  • Thread starter evinda
  • Start date
  • Tags
    Proof
In summary: It holds that:$$m \subset \{ n \} \rightarrow m=\{ n \} \lor m \in \{ n \} \rightarrow m=\{ n \} \lor m=n$$But we know the following:$$m \leq n \leftrightarrow m \in n \lor m=n$$and:$$\{ n \} \subset n$$So, $m \subset \{ m \} \rightarrow m \leq n$.
  • #1
evinda
Gold Member
MHB
3,836
0
Hello! (Wave)

I am looking at the following sentence:

For any natural numbers $m,n$ it holds:

  • $m \leq n \leftrightarrow m' \leq n'$
  • $m<n \leftrightarrow m'<n'$
  • $m<n' \leftrightarrow m \leq n$
  • $m \leq n' \leftrightarrow m \leq n \lor m=n'$

I tried to prove the second sentence like that:

$$m<n \rightarrow m \in n \rightarrow m \subset n \wedge \{m\} \subset n \rightarrow m \cup \{ m \} \subset n \rightarrow m \cup \{m \}=n \lor m \cup \{ m \} \in n$$

From the relation $m \cup \{m \} \in n$ we get that $m \cup \{ m \} \in n \cup \{ n \} \rightarrow m' \in n' \rightarrow m'<n'$.

$$m'<n' \rightarrow m' \in n' \rightarrow m \cup \{ m \} \in n \cup \{ n \} $$

$$m \in m \cup \{ m \} \rightarrow m \in n \cup \{ n \} \rightarrow m \subset n \cup \{ n \} \rightarrow m \subset n \lor m \subset \{ n \}$$

From the relation $m \subset n$ we conclude that $m \in n \lor m=n$.

How could we reject the case $m=n$ ? (Thinking)
 
Physics news on Phys.org
  • #2
evinda said:
$$m'<n' \rightarrow m' \in n' \rightarrow m \cup \{ m \} \in n \cup \{ n \} $$

$$m \in m \cup \{ m \} \rightarrow m \in n \cup \{ n \} \rightarrow m \subset n \cup \{ n \} \rightarrow m \subset n \lor m \subset \{ n \}$$

From the relation $m \subset n$ we conclude that $m \in n \lor m=n$.

How could we reject the case $m=n$ ?
You could argue that if $m=n$, then $m'=n'$ and therefore $m'<n'$, i.e., $m'\in n'$, is impossible.
 
  • #3
Evgeny.Makarov said:
You could argue that if $m=n$, then $m'=n'$ and therefore $m'<n'$, i.e., $m'\in n'$, is impossible.

I see! (Nod)

Could we show the fourth proposition ($m \leq n' \leftrightarrow m \leq n \lor m=n'$) like that? (Thinking)

$$m \leq n' \leftrightarrow m=n' \lor m \in n' \leftrightarrow m=n' \lor m \in n \cup \{ n \} \leftrightarrow m=n' \lor m \subset n \cup \{ n \} \\ \leftrightarrow m=n' \lor m \subset n \lor m \subset \{ n \} \leftrightarrow m=n' \lor m \leq n \lor m \subset \{ n \}$$

It holds that:

$$m \subset \{ n \} \rightarrow m=\{ n \} \lor m \in \{ n \} \rightarrow m=\{ n \} \lor m=n$$

But we know the following:

$$m \leq n \leftrightarrow m \in n \lor m=n$$

and:

$$\{ n \} \subset n$$

So, $m \subset \{ m \} \rightarrow m \leq n$.

Therefore,

$$m \leq n' \leftrightarrow m=n' \lor m \leq n.$$
 
  • #4
evinda said:
Hello! (Wave)

I am looking at the following sentence:

For any natural numbers $m,n$ it holds:

  • $m \leq n \leftrightarrow m' \leq n'$

I tried to prove the second sentence like that:

$$m<n \rightarrow m \in n \rightarrow m \subset n \wedge \{m\} \subset n \rightarrow m \cup \{ m \} \subset n \rightarrow m \cup \{m \}=n \lor m \cup \{ m \} \in n$$

From the relation $m \cup \{m \} \in n$ we get that $m \cup \{ m \} \in n \cup \{ n \} \rightarrow m' \in n' \rightarrow m'<n'$.

We say that $m \leq n \leftrightarrow m \in n \lor m=n$ but then we only use the case when $m \in n$.. Do we also have to conclude something from $m=n$? :confused:
 
  • #5


As a scientist, it is important to consider all possibilities and not reject any potential case without sufficient evidence. In this case, we cannot reject the possibility that $m=n$ without further information or context. It is possible that in certain scenarios, $m=n$ may still hold true and does not necessarily contradict the given proof. It is important to keep an open mind and continue exploring the possibilities until all evidence has been thoroughly evaluated.
 

FAQ: Proof of Second Sentence:$m<n \leftrightarrow m'<n'$

What is the meaning of "Proof of Second Sentence: $m

"Proof of Second Sentence: $m

How is "Proof of Second Sentence: $m

"Proof of Second Sentence: $m

Can "Proof of Second Sentence: $m

"Yes, "Proof of Second Sentence: $m

What is the difference between "$m

"$m

How does "Proof of Second Sentence: $m

"The concept of successor in mathematics is closely related to "Proof of Second Sentence: $m

Similar threads

Replies
3
Views
4K
Replies
6
Views
2K
Replies
30
Views
5K
Replies
5
Views
1K
Replies
4
Views
1K
Replies
8
Views
2K
Replies
2
Views
2K
Replies
2
Views
1K

Back
Top