MHB Proof of Sets X,Y: X⊆Y <=> P(X)⊆P(Y)

  • Thread starter Thread starter cocoabeens
  • Start date Start date
  • Tags Tags
    Proof Sets
AI Thread Summary
The discussion focuses on proving the equivalence between X ⊆ Y and P(X) ⊆ P(Y) for finite sets X and Y, where P() denotes the power set. The initial argument establishes that if X ⊆ Y, then for any subset A of X, A must also be a subset of Y, thereby showing P(X) ⊆ P(Y). The reverse direction requires demonstrating that if P(X) ⊆ P(Y), then every element x in X must also be in Y, concluding that X ⊆ Y. Participants clarify the logical steps and ensure the correct application of power set properties. The conclusion emphasizes the importance of precise language in mathematical proofs.
cocoabeens
Messages
6
Reaction score
0
If I have finite sets X,Y, and need to prove that X ⊆ Y <=> P(X) ⊆ P(Y), where P() denotes the power set of a set.

I started out saying that for infinite sets X,Y, x⊆X, and y⊆Y.
Given that X⊆Y, we want to show that P(B)⊆P(Y).
x⊆X, so through transitivity, x⊆Y (is this correct?). From here, I wasn't quite sure how to complete the rest.

And then I need to show the statement is true the other way, so
given P(X)⊆P(Y), show that X⊆Y.
X⊆P(X), and Y⊆P(Y), by definition of power set, so for some x⊆X, and y⊆Y, x⊆P(X), and y⊆P(Y). Am I on the right track here, or did I mess up some rules?
 
Physics news on Phys.org
Suppose we are given that $X \subseteq Y$. This means that if $x \in X$,then $x \in Y$.

Now we need to prove that $P(X) \subseteq P(Y)$. So let $A$ be any element of $P(X)$ so that: $A \subseteq X$.

This means for any $a \in A$, we have $a \in X$. Since $X \subseteq Y$, it follows then that $a \in Y$.

Since this is true for ANY $a \in A$, we conclude that $A \subseteq Y$, that is: $A \in P(Y)$. Since $A$ was arbitrary, this establishes that $P(X) \subseteq P(Y)$.

Note that finiteness did not play a role here.

To go the other way, suppose $P(X) \subseteq P(Y)$ and consider, for any $x \in X$, the element $\{x\} \in P(X)$.
 
Okay, it seems I was confusing it up with properties of power sets.

For the second part, I just work backwards, correct?

I show that the element {x}∈P(Y) because of the given condition, and thus x∈Y. Because x∈X, therefore X⊆Y? Did I confuse up some symbols?
 
That looks OK to me...in your conclusion, I would write:

"Because $x \in Y$ whenever $x \in X$, we have $X \subseteq Y$" instead of:

"Because $x \in X$, therefore $X \subseteq Y$".
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...
I'm taking a look at intuitionistic propositional logic (IPL). Basically it exclude Double Negation Elimination (DNE) from the set of axiom schemas replacing it with Ex falso quodlibet: ⊥ → p for any proposition p (including both atomic and composite propositions). In IPL, for instance, the Law of Excluded Middle (LEM) p ∨ ¬p is no longer a theorem. My question: aside from the logic formal perspective, is IPL supposed to model/address some specific "kind of world" ? Thanks.
I was reading a Bachelor thesis on Peano Arithmetic (PA). PA has the following axioms (not including the induction schema): $$\begin{align} & (A1) ~~~~ \forall x \neg (x + 1 = 0) \nonumber \\ & (A2) ~~~~ \forall xy (x + 1 =y + 1 \to x = y) \nonumber \\ & (A3) ~~~~ \forall x (x + 0 = x) \nonumber \\ & (A4) ~~~~ \forall xy (x + (y +1) = (x + y ) + 1) \nonumber \\ & (A5) ~~~~ \forall x (x \cdot 0 = 0) \nonumber \\ & (A6) ~~~~ \forall xy (x \cdot (y + 1) = (x \cdot y) + x) \nonumber...

Similar threads

Replies
1
Views
2K
Replies
4
Views
3K
Replies
1
Views
2K
Replies
4
Views
1K
Replies
2
Views
2K
Replies
1
Views
2K
Replies
5
Views
2K
Back
Top