- #1
odolwa99
- 85
- 0
Can anyone help me confirm if I've solved this correctly?
Many thanks.
Prove that [itex]\sqrt{ab}>\frac{2ab}{a+b}[/itex] if a & b are positive & unequal.
if [itex](\sqrt{ab})^2>(\frac{2ab}{a+b})^2[/itex]
if [itex]ab>\frac{4a^2b^2}{(a+b)^2}[/itex]
if [itex]ab(a^2+2ab+b^2)>4a^2b^2[/itex]
if [itex]a^3b+2a^2b^2+ab^3-4a^2b^2>0[/itex]
if [itex]a^3b-2a^2b^2+ab^3>0[/itex]
if [itex](a^2b-ab^2)>0[/itex]...true
Many thanks.
Homework Statement
Prove that [itex]\sqrt{ab}>\frac{2ab}{a+b}[/itex] if a & b are positive & unequal.
Homework Equations
The Attempt at a Solution
if [itex](\sqrt{ab})^2>(\frac{2ab}{a+b})^2[/itex]
if [itex]ab>\frac{4a^2b^2}{(a+b)^2}[/itex]
if [itex]ab(a^2+2ab+b^2)>4a^2b^2[/itex]
if [itex]a^3b+2a^2b^2+ab^3-4a^2b^2>0[/itex]
if [itex]a^3b-2a^2b^2+ab^3>0[/itex]
if [itex](a^2b-ab^2)>0[/itex]...true