- #1
jgens
Gold Member
- 1,593
- 50
Does anyone know if the following attempt at a proof would qualify as a rough proof of the intermediate value theorem?
Suppose a function f(x) is continuous on the interval (a,b) where a < c < b and an intermediate value k exists such that f(a) < k < f(b) and lim a→c f(a)=k ⋂ lim b→c f(b)=k. Furthermore, let us suppose that f(c) is not between f(a) and f(b). Based upon an early premise it follows that lim x→c f(x)=k; however, since f(c) is not between f(a) and f(b) this violates our earlier assumption that f(x) is continuous. Therefore, assuming a function f(x) is continuous on the interval (a,b) where a < c < b a value f(c) must exist between f(a) and f(b).
I’m really new to proofs so any suggestions would be helpful. Thanks.
Suppose a function f(x) is continuous on the interval (a,b) where a < c < b and an intermediate value k exists such that f(a) < k < f(b) and lim a→c f(a)=k ⋂ lim b→c f(b)=k. Furthermore, let us suppose that f(c) is not between f(a) and f(b). Based upon an early premise it follows that lim x→c f(x)=k; however, since f(c) is not between f(a) and f(b) this violates our earlier assumption that f(x) is continuous. Therefore, assuming a function f(x) is continuous on the interval (a,b) where a < c < b a value f(c) must exist between f(a) and f(b).
I’m really new to proofs so any suggestions would be helpful. Thanks.
Last edited: