- #1
joej24
- 78
- 0
Homework Statement
[tex]Proove \, that \, if \, \lim_{n \to \infty} a_{n} \neq 0 \, , \, \sum^\infty a_{n} \, diverges[/tex]
Homework Equations
[tex] S_{n} - S_{n-1} = a_{n}[/tex]
[tex] \lim_{n \to \infty} S_{n} = S[/tex]
The Attempt at a Solution
[tex] S_{n} - S_{n-1} = a_{n}[/tex]
[tex] \lim_{n \to \infty} S_{n} - S_{n-1} = \lim_{n \to \infty} a_{n}[/tex]
Since [itex] a_{n} \neq 0 [/itex], we can divide by [itex]a_{n}[/itex]
[tex] \lim_{n \to \infty} \frac {S_{n} - S_{n-1}} {a_{n}} = 1[/tex]
We can rewrite [itex] S_{n} [/itex] and [itex] S_{n-1} [/itex] as [itex] \sum^\infty a_{n} [/itex] and [itex] \sum^\infty a_{n-1} [/itex]
So, [tex] \lim_{n \to \infty} \frac {\sum^\infty a_{n} - \sum^\infty a_{n-1}} {a_{n}} = 1[/tex]
Rearranging, [tex] \lim_{n \to \infty} \frac{\sum^\infty a_{n}} {a_{n}} - \sum^\infty \frac{a_{n-1}} {a_{n}} = 1[/tex]
The term inside the second series is 1, so
[tex] \lim_{n \to \infty} \frac{\sum^\infty a_{n}} {a_{n}} = 1 + \sum^\infty 1 [/tex]
Thus, [tex] S_{n} = \lim_{n \to \infty} \sum^\infty a_{n} = a_{n} (1 + \sum^\infty 1) [/tex]
Since [itex] \sum^\infty 1[/itex] diverges, we can say that [itex] S_{n} [/itex] diverges and therefore, if [itex]\lim_{n \to \infty} a_{n} \neq 0 [/itex] , [itex] \sum^\infty a_{n} [/itex] diverges.
Is this proof complete?
Last edited: