- #1
- 16,336
- 258
Problem statement
Let n be a whole number of the form [tex]n=x^2+1[/tex] with [tex]x \in Z[/tex], and p an odd prime that divides n.
Proof: [tex]p \equiv 1 \pmod 4[/tex].Attempt at a solution
The only relevant case is if p=3 (mod 4).
If I try to calculate mod 3, or mod 4, or mod p, I'm not getting anywhere.
Help?
Let n be a whole number of the form [tex]n=x^2+1[/tex] with [tex]x \in Z[/tex], and p an odd prime that divides n.
Proof: [tex]p \equiv 1 \pmod 4[/tex].Attempt at a solution
The only relevant case is if p=3 (mod 4).
If I try to calculate mod 3, or mod 4, or mod p, I'm not getting anywhere.
Help?