MHB Proof: p=1 mod 4 if p|x^2+1 Problem statement

  • Thread starter Thread starter I like Serena
  • Start date Start date
  • Tags Tags
    Proof
AI Thread Summary
The discussion revolves around proving that if an odd prime p divides n = x^2 + 1, then p must be congruent to 1 modulo 4. Initial attempts focused on the case where p = 3 modulo 4, but this led to contradictions when checking values like p = 3, 7, and 11. The key insight is that if p divides n, then x^2 ≡ -1 mod p implies that the order of x modulo p cannot be 2, leading to the conclusion that the order must be 4. Consequently, this establishes that 4 divides (p - 1), confirming that p ≡ 1 mod 4. The proof hinges on applying Fermat's little theorem to solidify the argument.
I like Serena
Science Advisor
Homework Helper
MHB
Messages
16,335
Reaction score
258
Problem statement

Let n be a whole number of the form n=x^2+1 with x \in Z, and p an odd prime that divides n.
Proof: p \equiv 1 \pmod 4.Attempt at a solution

The only relevant case is if p=3 (mod 4).

If I try to calculate mod 3, or mod 4, or mod p, I'm not getting anywhere.

Help?
 
Mathematics news on Phys.org
ILikeSerena said:
Attempt at a solution

The only relevant case is if p=3 (mod 4).

If I try to calculate mod 3, or mod 4, or mod p, I'm not getting anywhere.

Help?

What? 3 isn't congruent to 1 mod 4. p = 5 would work since 5 is congruent to 1 mod 4 and 5|(x^2+1) when x = pm 2.

Now have can you show that if n is an integer such that p|n then p is congruent to 1 mod 4.

I don't know at the moment but I will think about it more.
 
dwsmith said:
What? 3 isn't congruent to 1 mod 4. p = 5 would work since 5 is congruent to 1 mod 4 and 5|(x^2+1) when x = pm 2.

Now have can you show that if n is an integer such that p|n then p is congruent to 1 mod 4.

I don't know at the moment but I will think about it more.

Thanks for replying.

Since p is odd, it is either congruent to 1 or 3 mod 4.
If it is congruent to 1, we have what we need to proof.
So we need to proof that if p=3 mod 4 it would lead to a contradiction.

If we check for instance p=3, we can tell that x^2+1=1,2 mod 3, which is a contradiction (since p=0 mod 3).
With p=7, we can check all possibilities mod 7, which indeed also leads to a contradiction.
Same with p=11.

But how can we generalize this? :confused:
 
I received a hint for this problem (a first year algebra problem btw).

It's:
Hint: determine the order of x in Z/pZ*.

I've got it! I've got it! :D
 
ILikeSerena said:
I received a hint for this problem (a first year algebra problem btw).

It's:
Hint: determine the order of x in Z/pZ*.

I've got it! I've got it! :D
here's a proof which is essentially the same as you have pointed out but little more straight forward:

$x^2 +1 \equiv 0 \mod p$
$\Rightarrow x^2 \equiv -1 \mod p$ ----> we get order of $x$ mod $p$ is not 2.
$\Rightarrow x^4 \equiv 1 \mod p$. ----> one can now easily conclude that the order of $x$ mod $p$ is $4$.

Thus $4|(p-1)$. why? (hint: Fermat's little theorem).
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top