- #1
baiyang11
- 9
- 0
Consider [tex]N[/tex] random variables [tex]X_{n}[/tex] each following a Bernoulli distribution [tex]B(r_{n})[/tex] with [tex]1 \geq r_{1} \geq r_{2} \geq ... \geq r_{N} \geq 0[/tex]. If we make following assumptions of sets [tex]A[/tex] and [tex]B[/tex]:
(1) [tex]A \subset I [/tex] and [tex]B \subset I[/tex] with [tex]I=\{1,2,3,...,N\}[/tex]
(2) [tex]|A \cap I_{1}| \geq |B \cap I_{1}|[/tex] with [tex]I_{1}=\{1,2,3,...,n\}, n<N[/tex]
(3) [tex]|A|=|B|=n[/tex]
Do we have [tex]\mathbb{E}(\Sigma_{a\in A} X_{a}) \geq\mathbb{E}(\Sigma_{b\in B} X_{b})[/tex]?
To avoid confusion, [tex]\mathbb{E}[/tex] means expected value.Thanks!
(1) [tex]A \subset I [/tex] and [tex]B \subset I[/tex] with [tex]I=\{1,2,3,...,N\}[/tex]
(2) [tex]|A \cap I_{1}| \geq |B \cap I_{1}|[/tex] with [tex]I_{1}=\{1,2,3,...,n\}, n<N[/tex]
(3) [tex]|A|=|B|=n[/tex]
Do we have [tex]\mathbb{E}(\Sigma_{a\in A} X_{a}) \geq\mathbb{E}(\Sigma_{b\in B} X_{b})[/tex]?
To avoid confusion, [tex]\mathbb{E}[/tex] means expected value.Thanks!