- #1
Math100
- 797
- 221
- Homework Statement
- Let ## N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0} ##, where ## 0\leq a_{k}\leq 9 ##, be the decimal expansion of a positive integer ## N ##.
Prove that ## 6 ## divides ## N ## if and only if ## 6 ## divides the integer
## M=a_{0}+4a_{1}+4a_{2}+\dotsb +4a_{m} ##.
- Relevant Equations
- None.
Proof:
Suppose that ## 6 ## divides ## N ##.
Let ## N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0} ##, where ## 0\leq a_{k}\leq 9 ##, be the
decimal expansion of a positive integer ## N ##.
Note that ## 6=2\dotsb 3 ##.
This means ## 2\mid 6 ## and ## 3\mid 6 ##.
Then ## 2\mid [4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m}]\implies 2\mid N\Leftrightarrow 2\mid [a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})] ##.
Now we have ## 3\mid (a_{0}+a_{1}+a_{2}+\dotsb +a_{m})\Leftrightarrow 3\mid [a_{0}+(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})+3(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})]\Leftrightarrow 3\mid [a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})]\Leftrightarrow 3\mid N ##.
Observe that ## 6\mid N\Leftrightarrow 6\mid [a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})] ##.
Thus, ## 6 ## divides the integer ## M=a_{0}+4a_{1}+4a_{2}+\dotsb +4a_{m} ##.
Conversely, suppose ## 6 ## divides the integer ## M=a_{0}+4a_{1}+4a_{2}+\dotsb +4a_{m} ##.
Then ## 10^{m}\equiv 4\pmod {6} ## ## \forall m\in\mathbb{N}\implies 10^{m}-4\equiv 0\pmod {6} ## ## \forall m\in\mathbb{N} ##.
This means ## 6\mid (10^{m}-4) ## ## \forall m\in\mathbb{N} ##.
Observe that ## 6\mid [(a_{0}+4a_{1}+\dotsb +4a_{m})+(10-4)a_{1}+(10^{2}-4)a_{2}+\dotsb +(10^{m}-4)a_{m}]\implies 6\mid (a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0}) ##.
Thus ## 6\mid N ##.
Therefore, ## 6 ## divides ## N ## if and only if ## 6 ## divides the integer ## M=a_{0}+4a_{1}+4a_{2}+\dotsb +4a_{m} ##.
Suppose that ## 6 ## divides ## N ##.
Let ## N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0} ##, where ## 0\leq a_{k}\leq 9 ##, be the
decimal expansion of a positive integer ## N ##.
Note that ## 6=2\dotsb 3 ##.
This means ## 2\mid 6 ## and ## 3\mid 6 ##.
Then ## 2\mid [4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m}]\implies 2\mid N\Leftrightarrow 2\mid [a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})] ##.
Now we have ## 3\mid (a_{0}+a_{1}+a_{2}+\dotsb +a_{m})\Leftrightarrow 3\mid [a_{0}+(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})+3(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})]\Leftrightarrow 3\mid [a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})]\Leftrightarrow 3\mid N ##.
Observe that ## 6\mid N\Leftrightarrow 6\mid [a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})] ##.
Thus, ## 6 ## divides the integer ## M=a_{0}+4a_{1}+4a_{2}+\dotsb +4a_{m} ##.
Conversely, suppose ## 6 ## divides the integer ## M=a_{0}+4a_{1}+4a_{2}+\dotsb +4a_{m} ##.
Then ## 10^{m}\equiv 4\pmod {6} ## ## \forall m\in\mathbb{N}\implies 10^{m}-4\equiv 0\pmod {6} ## ## \forall m\in\mathbb{N} ##.
This means ## 6\mid (10^{m}-4) ## ## \forall m\in\mathbb{N} ##.
Observe that ## 6\mid [(a_{0}+4a_{1}+\dotsb +4a_{m})+(10-4)a_{1}+(10^{2}-4)a_{2}+\dotsb +(10^{m}-4)a_{m}]\implies 6\mid (a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0}) ##.
Thus ## 6\mid N ##.
Therefore, ## 6 ## divides ## N ## if and only if ## 6 ## divides the integer ## M=a_{0}+4a_{1}+4a_{2}+\dotsb +4a_{m} ##.