- #1
AlbertEi
- 27
- 0
Hi,
I am having trouble following the Peskin and Schroeder and their derivations to show that a Dirac particle is a spin 1/2 particle (page 60 and 61). I understand how he gets the first (unnumbered) equation on page 61. However, I don't understand how he gets to the second equation:
\begin{equation}
J_z a^{s \dagger}_0|0 \rangle = \frac{1}{2m} \sum_r \left(u^{s \dagger}(0) \frac{\Sigma^3}{2} u^r(0) \right) a_0^{r \dagger} |0 \rangle
\end{equation}
In particular I do not understand why there is only one "summation" symbol. I would have thought that the equation would be:
\begin{equation}
J_z a^{s \dagger}_0|0 \rangle = \frac{1}{2m} \sum_r \sum_{s} \left(u^{s \dagger}(0) \frac{\Sigma^3}{2} u^r(0) \right) a_0^{r \dagger} |0 \rangle
\end{equation}
Does anybody know what they have done with the second "summation" symbol?
Any help would much appreciated.
I am having trouble following the Peskin and Schroeder and their derivations to show that a Dirac particle is a spin 1/2 particle (page 60 and 61). I understand how he gets the first (unnumbered) equation on page 61. However, I don't understand how he gets to the second equation:
\begin{equation}
J_z a^{s \dagger}_0|0 \rangle = \frac{1}{2m} \sum_r \left(u^{s \dagger}(0) \frac{\Sigma^3}{2} u^r(0) \right) a_0^{r \dagger} |0 \rangle
\end{equation}
In particular I do not understand why there is only one "summation" symbol. I would have thought that the equation would be:
\begin{equation}
J_z a^{s \dagger}_0|0 \rangle = \frac{1}{2m} \sum_r \sum_{s} \left(u^{s \dagger}(0) \frac{\Sigma^3}{2} u^r(0) \right) a_0^{r \dagger} |0 \rangle
\end{equation}
Does anybody know what they have done with the second "summation" symbol?
Any help would much appreciated.
Last edited: