JG89
- 724
- 1
I know that as x tends to 0, (sinx)/x tends to 1. A post from GibZ got me thinking, would this be a proper proof of that:
\lim_{x \rightarrow 0} x = \lim_{x \rightarrow 0} sinx and so \lim_{x \rightarrow 0} \frac{x}{x} = 1 = \lim_{x \rightarrow 0} \frac{sinx}{x} ??
\lim_{x \rightarrow 0} x = \lim_{x \rightarrow 0} sinx and so \lim_{x \rightarrow 0} \frac{x}{x} = 1 = \lim_{x \rightarrow 0} \frac{sinx}{x} ??