- #1
- 2,168
- 193
For fun, I decided to prove that two timelike never can be orthogonal. And for this, I used the Cauchy Inequality for that. Such that
The timelike vectors defined as,
$$g(\vec{v_1}, \vec{v_1}) = \vec{v_1} \cdot \vec{v_1} <0$$
$$g(\vec{v_2}, \vec{v_2}) = \vec{v_2} \cdot \vec{v_2} <0$$
And the ortogonality is,
$$g(\vec{v_1}, \vec{v_2}) = \vec{v_1} \cdot \vec{v_2} = 0$$
where ##g(\vec{e}_{\mu}, \vec{e}_{\nu})=g_{\mu \nu} = \eta_{\mu \nu} = diag(-1,1,1,1)##
So I tried something like,
##\vec{v_1} \cdot \vec{v_1} = -(v_1^0)^2 + (v_1^1)^2 + (v_1^2)^2 + (v_1^3)^2 < 0##
So
$$(v_1^0)^2 > (v_1^1)^2 + (v_1^2)^2 + (v_1^3)^2 = V_1^2 ~~(1)$$
Similarly
$$(v_2^0)^2 > (v_2^1)^2 + (v_2^2)^2 + (v_2^3)^2 = V_2^2 ~~(2)$$
And
##\vec{v_1} \cdot \vec{v_2} = -(v_1^0v_2^0) + (v_1^1v_2^1) + (v_1^2v_2^2)+ (v_1^3v_2^3)##Then I multiplied ##(1)## and ##(2)## to get
$$(v_1^0)^2(v_2^0)^2 > V_1^2 V_2^2$$
However if we stated that two timelike vectors are orthogonal we would get,
$$(v_1^0)^2(v_2^0)^2 = (V_1 \cdot V_2)^2$$
So since this contradicts the Cauchy-Schwarz Inequality we can say that two-timelike vectors cannot be orthogonal. Is there any more elegant proof that you know?
The timelike vectors defined as,
$$g(\vec{v_1}, \vec{v_1}) = \vec{v_1} \cdot \vec{v_1} <0$$
$$g(\vec{v_2}, \vec{v_2}) = \vec{v_2} \cdot \vec{v_2} <0$$
And the ortogonality is,
$$g(\vec{v_1}, \vec{v_2}) = \vec{v_1} \cdot \vec{v_2} = 0$$
where ##g(\vec{e}_{\mu}, \vec{e}_{\nu})=g_{\mu \nu} = \eta_{\mu \nu} = diag(-1,1,1,1)##
So I tried something like,
##\vec{v_1} \cdot \vec{v_1} = -(v_1^0)^2 + (v_1^1)^2 + (v_1^2)^2 + (v_1^3)^2 < 0##
So
$$(v_1^0)^2 > (v_1^1)^2 + (v_1^2)^2 + (v_1^3)^2 = V_1^2 ~~(1)$$
Similarly
$$(v_2^0)^2 > (v_2^1)^2 + (v_2^2)^2 + (v_2^3)^2 = V_2^2 ~~(2)$$
And
##\vec{v_1} \cdot \vec{v_2} = -(v_1^0v_2^0) + (v_1^1v_2^1) + (v_1^2v_2^2)+ (v_1^3v_2^3)##Then I multiplied ##(1)## and ##(2)## to get
$$(v_1^0)^2(v_2^0)^2 > V_1^2 V_2^2$$
However if we stated that two timelike vectors are orthogonal we would get,
$$(v_1^0)^2(v_2^0)^2 = (V_1 \cdot V_2)^2$$
So since this contradicts the Cauchy-Schwarz Inequality we can say that two-timelike vectors cannot be orthogonal. Is there any more elegant proof that you know?